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A great number of people helped bring this book into existence. Some contributed ideas for technical topics, some hel ped with the
process of producing the book, and some just made life more fun while | was working on it.

When the number of contributors to abook islarge, it is not uncommon to dispense with individual acknowledgmentsin favor of a
generic "Contributors to this book are too numerous to mention." | prefer to follow the expansive lead of John L. Hennessy and David
A. Patterson in -Computer Architecture: A Quantitative Approach (Morgan Kaufmann, 1995). In addition to motivating the

comprehensive acknowledgments that follow, their book provides hard data for the 90-10 rule, which | refer to in ltem 16.

The Items

With the exception of direct quotations, all the words in this book are mine. However, many of the ideas| discuss came from others. |
have done my best to keep track of who contributed what, but | know | have included information from sources | now fail to recall,
foremost among them many posters to the Usenet newsgroups-conp. | ang. c++ and -comp.std.c++.

Many ideasin the C++ community have been developed independently by many people. In what follows, | note only where | was
exposed to particular ideas, not necessarily where those ideas originated.

Brian Kernighan suggested the use of macros to approximate the syntax of the new C++ casting operators | describe in ltem 2.

In Item 3, my warning about deleting an array of derived class objects through a base class pointer is based on material in Dan Saks
"Gotchas' talk, which he's given at several conferences and trade shows.

In Item 5, the proxy class technique for preventing unwanted application of single-argument constructors is based on material in
Andrew Koenig's column in the January 1994 -C++ Report.

James Kanze made a posting to -conp. | ang. c++ onimplementing postfix increment and decrement operators viathe
corresponding prefix functions; | use histechniquein Item 6.

David Cok, writing me about material | covered in Effective C++, brought to my attention the distinction between oper at or new
and the new operator that is the crux of Item 8. Even after reading hisletter, | didn't really understand the distinction, but without his
initial prodding, | probably still wouldn't.

The notion of using destructors to prevent resource leaks (used in Item 9) comes from section 15.3 of Margaret A. Ellis and Bjarne
Stroustrup's -The Annotated C++ Reference Manual (see page 285). There the techniqueis called resource acquisition isinitialization.
Tom Cargill suggested | shift the focus of the approach from resource acquisition to resource release.

Some of my discussion in Item 11 wasinspired by material in Chapter 4 of -Taligent's Guide to Designing Programs
(Addison-Wesley, 1994).

My description of over-eager memory alocation for the DynAr r ay classin Item 18 is based on Tom Cargill's article, "A Dynamic
vector is harder than it looks," in the June 1992 -C++ Report. A more sophisticated design for adynamic array class can be found in
Cargill's follow-up column in the January 1994 -C++ Report.

Item 21 was inspired by Brian Kernighan's paper, "An AWK to C++ Trandator," at the 1991 USENIX C++ Conference. His use of

overloaded operators (sixty-seven of them!) to handle mixed-type arithmetic operations, though designed to solve a problem unrelated
totheonel explorein Item 21, led me to consider multiple overloadings as a solution to the problem of temporary creation.

In Iltem 26, my design of atemplate class for counting objectsis based on aposting to -:conp. | ang. c++ by Jamshid Afshar.

The idea of amixin class to keep track of pointersfrom oper at or new (see Iltem 27) is based on a suggestion by Don Box. Steve
Clamage made the idea practical by explaining how dynami ¢_cast can be used to find the beginning of memory for an object.

The discussion of smart pointersin Item 28 is based in part on Steven Buroff's and Rob Murray's C++ Oracle column in the October
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1993 -C++ Report; on Daniel R. Edelson's classic paper, "Smart Pointers: They're Smart, but They're Not Pointers,” in the
proceedings of the 1992 USENIX C++ Conference; on section 15.9.1 of Bjarne Stroustrup's -The Design and Evolution of C++ (see
page 285); on Gregory Colvin's "C++ Memory Management” class notes from C/C++ Solutions '95; and on Cay Horstmann's column
in the March-April 1993 issue of the :C++ Report. | developed some of the material myself, though. Really.

In ltem 29, the use of a base classto store reference counts and of smart pointers to manipulate those counts is based on Rob Murray's
discussions of the same topicsin sections 6.3.2 and 7.4.2, respectively, of his-C++ Strategies and Tactics (see page 286). The design
for adding reference counting to existing classes follows that presented by Cay Horstmann in his March-April 1993 column in the
-C++ Report.

In Item 30, my discussion of Ivalue contextsis based on commentsin Dan Saks' column in the C User's Journal -C/C++ Users Journal)
of January 1993. The observation that non-proxy member functions are unavailable when called through proxies comes from an
unpublished paper by Cay Horstmann.

The use of runtime type information to build vtbl-like arrays of function pointers (in Item 31) is based on ideas put forward by Bjarne
Stroustrup in postingsto .conp. | ang. c++ and in section 13.8.1 of his-The Design and Evolution of C++ (see page 285).

The material in Item 33 is based on severa of my -C++ Report columnsin 1994 and 1995. Those columns, in turn, included comments

| received from Klaus Kreft about how to usedynami ¢_cast toimplement avirtual oper at or = that detects arguments of the
wrong type.

Much of the material in I[tem 34 was motivated by Steve Clamage's article, "Linking C++ with other languages,” in the May 1992
°C++ Report. In that same Item, my treatment of the problems caused by functionslike st r dup was motivated by an anonymous
reviewer.

The Book

Reviewing draft copies of abook is hard — and vitally important — work. | am grateful that so many people were willing to invest
their time and energy on my behalf. | am especially grateful to Jill Huchital, Tim Johnson, Brian Kernighan, Eric Nagler, and Chris
Van Wyk, asthey read the book (or large portions of it) more than once. In addition to these gluttons for punishment, complete drafts
of the manuscript were read by Katrina Avery, Don Box, Steve Burkett, Tom Cargill, Tony Davis, Carolyn Duby, Bruce Eckel, Read
Fleming, Cay Horstmann, James Kanze, Russ Paielli, Steve Rosenthal, Robin Rowe, Dan Saks, Chris Sells, Webb Stacy, Dave Swift,
Steve Vinoski, and Fred Wild. Partia drafts were reviewed by Bob Beauchaine, Gerd Hoeren, Jeff Jackson, and Nancy L. Urbano.
Each of these reviewers made comments that greatly improved the accuracy, utility, and presentation of the material you find here.

Once the book came out, | received corrections and suggestions from many people. I've listed these sharp-eyed readersin the order in
which | received their missives: Luis Kida, John Potter, Tim Uttormark, Mike Fulkerson, Dan Saks, Wolfgang Glunz, Clovis Tondo,
Michael Loftus, Liz Hanks, Wil Evers, Stefan Kuhlins, Jim McCracken, Alan Duchan, John Jacobsma, Ramesh Nagabushnam, Ed
Willink, Kirk Swenson, Jack Reeves, Doug Schmidt, Tim Buchowski, Paul Chisholm, Andrew Klein, Eric Nagler, Jeffrey Smith, Sam
Bent, Oleg Shteynbuk, Anton Doblmaier, UIf Michaglis, Sekhar Muddana, Michael Baker, Y echiel Kimchi, David Papurt, lan
Haggard, Robert Schwartz, David Halpin, Graham Mark, David Barrett, Damian Kanarek, Ron Coultts, Lance Whitesel, Jon Lachelt,
Cheryl Ferguson, Munir Mahmood, Klaus-Georg Adams, David Goh, Chris Morley, and Rainer Baumschlager. Their suggestions
allowed me to improve More Effective C++ in updated printings (such asthisone), and | greatly appreciate their help.

During preparation of this book, | faced many questions about the emerging I SO/ANSI standard for C++, and | am grateful to Steve
Clamage and Dan Saks for taking the time to respond to my incessant email queries.

John Max Skaller and Steve Rumsby conspired to get me the HTML for the draft ANSI C++ standard before it was widely available.
Vivian Neou pointed me to the -Netscape WWW browser as a stand-alone HTML viewer under (16 bit) Microsoft Windows, and | am
deeply grateful to the folks at Netscape Communications for making their fine viewer freely available on such a pathetic excuse for an
operating system.

Bryan Hobbs and Hachemi Zenad generously arranged to get me a copy of the internal engineering version of the -MetaWare C++
compiler so | could check the code in this book using the latest features of the language. Cay Horstmann helped me get the compiler
up and running in the very foreign world of DOS and DOS extenders. Borland (now °Inprise) provided a beta copy of their most

advanced compiler, and Eric Nagler and Chris Sells provided invaluable help in testing code for me on compilers to which | had no
access.

Without the staff at the Corporate and Professional Publishing Division of Addison-Wesley, there would be no book, and I am
indebted to Kim Dawley, Lana Langlois, Simone Payment, Marty Rabinowitz, Pradeepa Siva, John Wait, and the rest of the staff for
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their encouragement, patience, and help with the production of this work.

Chris Guzikowski helped draft the back cover copy for this book, and Tim Johnson stole time from his research on low-temperature
physicsto critique later versions of that text.

Tom Cargill graciously agreed to make his-C++ Report article on exceptions available.

The People

Kathy Reed was responsible for my introduction to programming; surely she didn't deserve to have to put up with akid like me.
Donad French had faith in my ability to develop and present C++ teaching materials when | had no track record. He also introduced
me to John Wait, my editor at Addison-Wesley, an act for which | will always be grateful. The triumvirate at Beaver Ridge — Jayni
Besaw, Lorri Fields, and Beth McKee — provided untold entertainment on my breaks as | worked on the book.

My wife, Nancy L. Urbano, put up with me and put up with me and put up with me as | worked on the book, continued to work on the
book, and kept working on the book. How many times did she hear me say we'd do something after the book was done? Now the book
is done, and we will do those things. She amazes me. | love her.

Finally, I must acknowledge our puppy, -Persephone, whose existence changed our world forever. Without her, this book would have
been finished both sooner and with less sleep deprivation, but also with substantially less comic relief.

Back to Acknowledgments
Continue to Basics

Introduction

These are heady days for C++ programmers. Commercially available |less than a decade, C++ has nevertheless emerged as the
language of choice for systems programming on nearly all major computing platforms. Companies and individuals with challenging
programming problems increasingly embrace the language, and the question faced by those who do not use C++ is often when they
will start, not if. Standardization of C++ is complete, and the breadth and scope of the accompanying library — which both dwarfs and
subsumes that of C — makes it possible to write rich, complex programs without sacrificing portability or implementing common
algorithms and data structures from scratch. C++ compilers continue to proliferate, the features they offer continue to expand, and the
guality of the code they generate continues to improve. Tools and environments for C++ development grow ever more abundant,
powerful, and robust. Commercial libraries all but obviate the need to write code in many application areas.

As the language has matured and our experience with it has increased, our needs for information about it have changed. In 1990,
people wanted to know what C++ was. By 1992, they wanted to know how to make it work. Now C++ programmers ask higher-level
guestions. How can | design my software so it will adapt to future demands? How can | improve the efficiency of my code without
compromising its correctness or making it harder to use? How can | implement sophisticated functionality not directly supported by
the language?

In this book, | answer these questions and many others like them.

This book shows how to design and implement C++ software that is more effective: more likely to behave correctly; more robust in the
face of exceptions; more efficient; more portable; makes better use of language features; adapts to change more gracefully; works
better in a mixed-language environment; is easier to use correctly; is harder to use incorrectly. In short, software that's just better.

The material in this book is divided into 35 Items. Each Item summarizes accumulated wisdom of the C++ programming community
on a particular topic. Most Items take the form of guidelines, and the explanation accompanying each guideline describes why the
guideline exists, what happensiif you fail to follow it, and under what conditions it may make sense to violate the guideline anyway.

Itemsfall into several categories. Some concern particular language features, especially newer features with which you may have little
experience. For example, Items 9 through 15 are devoted to exceptions (as are the magazine articles by Tom Cargill, Jack Reeves, and

Herb Sutter). Other Items explain how to combine the features of the language to achieve higher-level goals. Items 25 through 31, for

instance, describe how to constrain the number or placement of objects, how to create functions that act "virtual" on the type of more
than one object, how to create "smart pointers,” and more. Still other Items address broader topics; Items 16 through 24 focus on

efficiency. No matter what the topic of a particular Item, each takes a no-nonsense approach to the subject. In More Effective C++,

you learn how to use C++ more effectively. The descriptions of language features that make up the bulk of most C++ texts arein this
book mere background information.

An implication of this approach isthat you should be familiar with C++ before reading this book. | take for granted that you
understand classes, protection levels, virtual and nonvirtual functions, etc., and | assume you are acquainted with the concepts behind
templates and exceptions. At the sametime, | don't expect you to be alanguage expert, so when poking into |esser-known corners of
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C++, | aways explain what's going on.
The C++ in More Effective C++

The C++ | describe in this book is the language specified by the -Final Draft International Standard of the <|SO/ANS| standardization
committee in November 1997. In al likelihood, this means | use afew features your compilers don't yet support. Don't worry. The

only "new" feature | assume you have is templates, and templates are now amost universally available. | use exceptions, too, but that
useislargely confined to Items 9 through 15, which are specifically devoted to exceptions. If you don't have access to a compiler

offering exceptions, that's okay. It won't affect your ability to take advantage of the material in the other parts of the book.
Furthermore, you should read Items 9 through 15 even if you don't have support for exceptions, because those items (as well as the

associated articles) examine issues you need to understand in any case.

| recognize that just because the standardization committee blesses a feature or endorses a practice, there's no guarantee that the
feature is present in current compilers or the practice is applicable to existing environments. When faced with a discrepancy between
theory (what the committee says) and practice (what actually works), | discuss both, though my bias is toward things that work.
Because | discuss both, this book will aid you as your compilers approach conformance with the standard. It will show you how to use
existing constructs to approximate language features your compilers don't yet support, and it will guide you when you decide to
transform workarounds into newly- supported features.

Notice that | refer to your compilers — plural. Different compilers implement varying approximations to the standard, so | encourage
you to develop your code under at least two compilers. Doing so will help you avoid inadvertent dependence on one vendor's
proprietary language extension or its misinterpretation of the standard. It will also help keep you away from the bleeding edge of
compiler technology, e.g., from new features supported by only one vendor. Such features are often poorly implemented (buggy or
slow — frequently both), and upon their introduction, the C++ community lacks experience to advise you in their proper use. Blazing
trails can be exciting, but when your goal is producing reliable code, it's often best to let others test the waters before jumping in.

There are two constructs you'll see in this book that may not be familiar to you. Both are relatively recent language extensions. Some
compilers support them, but if your compilers don't, you can easily approximate them with features you do have.

Thefirst construct isthe bool type, which has asits values the keywordst r ue and f al se. If your compilers haven't implemented
bool , there are two ways to approximate it. One isto use aglobal enum:

enum bool { false, true };

This allows you to overload functions on the basis of whether they takeabool orani nt, but it has the disadvantage that the built-in

comparison operators (i.e., ==, <, >=, etc.) still returni nt s. Asaresult, code like the following will not behave the way it's supposed
to:

void f(int);

voi d f(bool);

int X, y;

f( x <y); Il calls f(int), but it

/1 should call f(bool)
The enum approximation may thus lead to code whose behavior changes when you submit it to a compiler that truly supportsbool .

An alternative isto use atypedef for bool and constant objectsfort r ue andf al se:
typedef int bool;

const bool false = O;
const bool true = 1;

Thisis compatible with the traditional semantics of C and C++, and the behavior of programs using this approximation won't change
when they're ported to bool -supporting compilers. The drawback is that you can't differentiate between bool andi nt when
overloading functions. Both approximations are reasonable. Choose the one that best fits your circumstances.

The second new construct is really four constructs, the casting formsst ati ¢_cast, const _cast,dynani c_cast, and
reinterpret _cast.If you'renot familiar with these casts, you'll want to turn to Item 2 and read all about them. Not only do they

do more than the C-style casts they replace, they do it better. | use these new casting forms whenever | need to perform acast in this
book.

There is more to C++ than the language itself. There is also the standard library (see ltem E49). Where possible, | employ the standard
stri ng typeinstead of using raw char * pointers, and | encourage you to do the same. st r i ng objects are no more difficult to
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manipulate than char * -based strings, and they relieve you of most memory-management concerns. Furthermore, st r i ng objects
are less susceptible to memory leaks if an exception isthrown (see Items 9 and 10). A well-implemented st r i ng type can hold its
own in an efficiency contest withitschar * equivaent, and it may even do better. (For insight into how this could be, see [tem 29.) If
you don't have access to an implementation of the standard st r i ng type, you ailmost certainly have accessto some st ri ng-like
class. Useit. Just about anything is preferable to raw char * s.

| use data structures from the standard library whenever | can. Such data structures are drawn from the Standard Template Library (the
"STL" — seeltem 35). The STL includes bitsets, vectors, lists, queues, stacks, maps, sets, and more, and you should prefer these
standardized data structures to the ad hoc equivalents you might otherwise be tempted to write. Y our compilers may not have the STL
bundled in, but don't let that keep you from using it. Thanks to Silicon Graphics, you can download a free copy that works with many
compilers from the -SGI STL web site.

If you currently use alibrary of algorithms and data structures and are happy with it, there's no need to switch to the STL just because
it's"standard.” However, if you have a choice between using an STL component or writing your own code from scratch, you should
lean toward using the STL. Remember code reuse? STL (and the rest of the standard library) has lots of code that is very much worth
reusing.

Conventions and Terminology

Any time | mention inheritance in this book, I mean public inheritance (see Item E35). If | don't mean public inheritance, I'll say so
explicitly. When drawing inheritance hierarchies, | depict base-derived relationships by drawing arrows from derived classes to base
classes. For example, hereisahierarchy from [tem 31:

Game0bjact

GameObject

GameObject

SpaceShip
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GameObject

SpaceStation SpaceShip

GameObject

SpaceStation SpaceShip

This notation is the reverse of the convention | employed in the first (but not the second) edition of Effective C++. I'm now convinced
that most C++ practitioners draw inheritance arrows from derived to base classes, and | am happy to follow suit. Within such
diagrams, abstract classes (e.g., Gane(hj ect ) are shaded and concrete classes (e.g., SpaceShi p) are unshaded.

Inheritance gives rise to pointers and references with two different types, a static type and a dynamic type. The static type of a pointer
or referenceisits declared type. The dynamic type is determined by the type of object it actually refersto. Here are some examples
based on the classes above:

Gamehj ect *pgo = [/l static type of pgo is

new SpaceShi p; /1 Gameoj ect*, dynamc
[/l type is SpaceShi p*

Asteroid *pa = new Asteroid; /] static type of pais

[/l Asteroid*. So is its
/1 dynam c type

pgo = pa; /] static type of pgo is
/1 still (and al ways)
/[l GameQoject*. Its
/!l dynam c type i s now
/'l Asteroid*

Gamehj ect & rgo = *pa; [/l static type of rgo is
/1 Gameoj ect, dynanic
[/l type is Asteroid

These examples also demonstrate a naming convention | like. pgo is apointer-to-GanmeChj ect ; pa isapointer-to-Ast er oi d; r go
isareference-to-Gamehj ect . | often concoct pointer and reference names in this fashion.

Two of my favorite parameter namesarel hs andr hs, abbreviations for "left-hand side" and "right-hand side," respectively. To
understand the rational e behind these names, consider a class for representing rational numbers:

class Rational { ... };

If I wanted afunction to compare pairs of Rat i onal objects, I'd declareit like this:
bool operator==(const Rational & | hs, const Rational & rhs);

That would let me write this kind of code:
Rational r1, r2;

if (rl1 ==r2)
Within the call to oper at or ==, r 1 appears on the |eft-hand side of the "==" and isbound to | hs, whiler 2 appears on the
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right-hand side of the "=="and isbound to r hs.

Other abbreviations | employ include ctor for "constructor,” dtor for "destructor," and RTTI for C++'s support for runtime type
identification (of whichdynani ¢_cast isthe most commonly used component).

When you allocate memory and fail to free it, you have amemory leak. Memory leaks arise in both C and C++, but in C++, memory
leaks leak more than just memory. That's because C++ automatically calls constructors when objects are created, and constructors may
themselves allocate resources. For example, consider this code:

class Wdget { ... }; /1l some class —it doesn't
[l matter what it is
W dget *pw = new W dget; /1 dynamically allocate a

/1 W dget object

[/l assume pw is never
/] del eted

This code leaks memory, because the W dget pointed to by pwis never deleted. However, if the W dget constructor allocates
additional resourcesthat are to be released when the W dget is destroyed (such as file descriptors, semaphores, window handles,
database locks, etc.), those resources are lost just as surely as the memory is. To emphasize that memory leaksin C++ often leak other
resources, too, | usually speak of resource leaks in this book rather than memory leaks.

Y ou won't see many inline functionsin this book. That's not because | didike inlining. Far fromit, | believe that inline functions are an
important feature of C++. However, the criteriafor determining whether a function should be inlined can be complex, subtle, and
platform-dependent (see Item E33). Asaresult, | avoid inlining unless there is a point about inlining | wish to make. When you see a
non-inline function in More Effective C++, that doesn't mean | think it would be a bad idea to declare the functioni nl i ne, it just
means the decision to inline that function is independent of the material I'm examining at that point in the book.

A few C++ features have been deprecated by the -standardization committee. Such features are slated for eventual removal from the
language, because newer features have been added that do what the deprecated features do, but do it better. In this book, | identify
deprecated constructs and explain what features replace them. Y ou should try to avoid deprecated features where you can, but there's
no reason to be overly concerned about their use. In the interest of preserving backward compatibility for their customers, compiler
vendors are likely to support deprecated features for many years.

A client is somebody (a programmer) or something (a class or function, typically) that uses the code you write. For example, if you
write aDat e class (for representing birthdays, deadlines, when the Second Coming occurs, etc.), anybody using that classis your
client. Furthermore, any sections of code that use the Dat e class are your clients as well. Clients are important. In fact, clients are the
name of the game! If nobody uses the software you write, why write it? Y ou will find | worry alot about making things easier for
clients, often at the expense of making things more difficult for you, because good software is "clientcentric* — it revolves around
clients. If this strikes you as unreasonably philanthropic, view it instead through a lens of self-interest. Do you ever use the classes or
functions you write? If so, you're your own client, so making things easier for clientsin general also makes them easier for you.

When discussing class or function templates and the classes or functions generated from them, | reserve the right to be sloppy about
the difference between the templates and their instantiations. For example, if Ar r ay isaclass template taking a type parameter T, |
may refer to a particular instantiation of the template asan Ar r ay, even though Ar r ay<T> isreally the name of the class. Similarly,
if swap isafunction template taking atype parameter T, | may refer to an instantiation as swap instead of swap<T>. In cases where
thiskind of shorthand might be unclear, | include template parameters when referring to template instantiations.

Reporting Bugs, Making Suggestions, Getting Book Updates

I have tried to make this book as accurate, readable, and useful as possible, but | know there is room for improvement. If you find an
error of any kind — technical, grammatical, typographical, whatever — please tell me about it. | will try to correct the mistakein
future printings of the book, and if you are the first person to report it, | will gladly add your name to the book's acknowledgments. If
you have other suggestions for improvement, | welcome those, too.

| continue to collect guidelines for effective programming in C++. If you have ideas for new guidelines, I'd be delighted if you'd share
them with me. Send your guidelines, your comments, your criticisms, and your bug reports to:

Scott Meyers

c/o Editor-in-Chief, Corporate and Professional Publishing

Addison-Wesley Publishing Company

1 Jacob Way

Reading, MA 01867
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U.S A.
Alternatively, you may send electronic mail to nrec++@w . com

I maintain alist of changes to this book sinceits first printing, including bug-fixes, clarifications, and technical updates. Thislist,
along with other book-related information, is available from the -Web site for this book. It is also available via anonymous FTP from

ft p. awl . cominthedirectory cp/ mec++. If you would like a copy of the list of changes to this book, but you lack access to the
Internet, please send arequest to one of the addresses above, and | will see that the list is sent to you.

Enough preliminaries. On with the show!

Back to Introduction
Continue to Item 1: Distinguish between pointers and references

Basics
Ah, the basics. Pointers, references, casts, arrays, constructors — you can't get much more basic than that. All but the simplest C++
programs use most of these features, and many programs use them all.

In spite of our familiarity with these parts of the language, sometimes they can still surprise us. Thisis especially true for programmers
making the transition from C to C++, because the concepts behind references, dynamic casts, default constructors, and other non-C
features are usually alittle murky.

This chapter describes the differences between pointers and references and offers guidance on when to use each. It introduces the new
C++ syntax for casts and explains why the new casts are superior to the C-style casts they replace. It examines the C notion of arrays
and the C++ notion of polymorphism, and it describes why mixing the two is an idea whose time will never come. Findly, it considers
the pros and cons of default constructors and suggests ways to work around language restrictions that encourage you to have one when
none makes sense.

By heeding the advice in the items that follow, you'll make progress toward a worthy goal: producing software that expresses your
design intentions clearly and correctly.

Back to Basics
Continue to Item 2: Prefer C++-style casts

Item 1. Distinguish between pointers and references.

Pointers and references look different enough (pointers usethe "* " and "- >" operators, referencesuse . "), but they seem to do
similar things. Both pointers and references let you refer to other objectsindirectly. How, then, do you decide when to use one and not
the other?

First, recognize that there is no such thing as anull reference. A reference must always refer to some object. Asaresult, if you have a
variable whose purpose is to refer to another object, but it is possible that there might not be an object to refer to, you should make the
variable a pointer, because then you can set it to null. On the other hand, if the variable must always refer to an object, i.e., if your
design does not allow for the possibility that the variable is null, you should probably make the variable areference.
"But wait," you wonder, "what about underhandedness like this?"

char *pc = 0; /! set pointer to null

char& rc = *pc; /! make reference refer to
/1 dereferenced null pointer

Wéll, thisis evil, pure and simple. The results are undefined (compilers can generate output to do anything they like), and people who
write this kind of code should be shunned until they agree to cease and desist. If you have to worry about things like thisin your
software, you're probably best off avoiding references entirely. Either that or finding a better class of programmers to work with. Well
henceforth ignore the possibility that a reference can be "null."

Because areference must refer to an object, C++ requires that references be initialized:

string& rs; /1 error! References nust
/1 be initialized

string s("xyzzy");

string& rs = s; /! okay, rs refers to s
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Pointers are subject to no such restriction:
string *ps; /1 uninitialized pointer:
/1 valid but risky

The fact that there is no such thing as a null reference implies that it can be more efficient to use references than to use pointers. That's
because there's no need to test the validity of areference before using it:

voi d print Doubl e(const doubl e& rd)

{
cout << rd; [/ no need to test rd; it
} /1 must refer to a double

Pointers, on the other hand, should generally be tested against null:
voi d pri nt Doubl e(const doubl e *pd)

if (pd) { /1 check for null pointer
cout << *pd;
}
}

Another important difference between pointers and referencesis that pointers may be reassigned to refer to different objects. A
reference, however, always refers to the object with which it isinitialized:

string s1("Nancy");

string s2("C ancy");

string& rs = si; /Il rs refers to sl

string *ps = &s1i,; /1l ps points to sl

rs = sz, /[l rs still refers to sli,
/1l but sl's value is now
/1 "dancy"

ps = &s2; /1l ps now points to s2;

/1 sl is unchanged

In general, you should use a pointer whenever you need to take into account the possibility that there's nothing to refer to (in which
case you can set the pointer to null) or whenever you need to be able to refer to different things at different times (in which case you
can change where the pointer points). Y ou should use a reference whenever you know there will always be an object to refer to and
you also know that once you're referring to that object, you'll never want to refer to anything else.

There is one other situation in which you should use areference, and that's when you're implementing certain operators. The most
common exampleisoper at or [ ] . This operator typically needs to return something that can be used as the target of an assignment:
vector<int> v(10); /] create an int vector of size 10;
/'l vector is a tenplate in the
/1l standard C++ library (see |tem 35)

v[5] = 10; /1 the target of this assignnent is
/1l the return value of operator[]

If oper at or[] returned a pointer, this last statement would have to be written this way:
*v[5] = 10;

But this makesit look like v isavector of pointers, which it's not. For thisreason, you'll ailmost awayswant oper at or [ ] toreturna
reference. (For an interesting exception to this rule, see Iltem 30.)

References, then, are the feature of choice when you know you have something to refer to, when you'll never want to refer to anything
else, and when implementing operators whose syntactic reguirements make the use of pointers undesirable. In all other cases, stick
with pointers.

Back to Item 1: Distinguish between pointers and references
Continue to Item 3: Never treat arrays polymorphically
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Item 2: Prefer C++-style casts.

Consider the lowly cast. Nearly as much a programming pariah as the got o0, it nonetheless endures, because when worse comes to
worst and push comes to shove, casts can be necessary. Casts are especially necessary when worse comes to worst and push comesto
shove.

Still, C-style casts are not all they might be. For one thing, they're rather crude beasts, letting you cast pretty much any type to pretty
much any other type. It would be nice to be able to specify more precisely the purpose of each cast. Thereisagreat difference, for
example, between a cast that changes a pointer-to-const -object into a pointer-to-non-const -object (i.e., acast that changes only the
const ness of an object) and a cast that changes a pointer-to-base-class-object into a pointer-to-derived-class-object (i.e., a cast that
completely changes an object's type). Traditional C-style casts make no such distinctions. (Thisis hardly a surprise. C-style casts were
designed for C, not C++.)

A second problem with casts is that they are hard to find. Syntactically, casts consist of little more than a pair of parentheses and an
identifier, and parentheses and identifiers are used everywhere in C++. This makes it tough to answer even the most basic cast-rel ated
guestions, questions like, "Are any casts used in this program?' That's because human readers are likely to overlook casts, and tools
like gr ep cannot distinguish them from non-cast constructs that are syntactically similar.

C++ addresses the shortcomings of C-style casts by introducing four new cast operators, st ati ¢_cast,const _cast,
dynamni c_cast,andr ei nt er pret _cast . For most purposes, all you need to know about these operatorsis that what you are
accustomed to writing like this,

(type) expression
you should now generally write like this:

stati c_cast <type>(expressi on)
For example, suppose you'd liketo cast ani nt toadoubl e to force an expression involving i nt stoyield afloating point value.
Using C-style casts, you could do it like this:

int firstNunber, secondNunber;

doubl e result = ((doubl e)firstNunber)/secondNunber;

With the new casts, you'd write it this way:
doubl e result = static_cast <doubl e>(firstNunber)/secondNunber ;

Now there's acast that's easy to see, both for humans and for programs.

stati c_cast hasbasicaly the same power and meaning as the general-purpose C-style cast. It also has the same kind of
restrictions. For example, you can't cast ast r uct intoani nt or adoubl e into apointer using st ati ¢c_cast any more than you
can with a C-style cast. Furthermore, st at i ¢_cast can't remove const nessfrom an expression, because another new cast,
const _cast, isdesigned specifically to do that.

The other new C++ casts are used for more restricted purposes. const _cast isused to cast away theconst nessor vol at i | eness
of an expression. By using aconst _cast , you emphasize (to both humans and compilers) that the only thing you want to change
through the cast isthe const nessor vol at i | eness of something. This meaning is enforced by compilers. If you try to employ
const _cast for anything other than modifying the const nessor vol at i | eness of an expression, your cast will be rejected. Here
are some examples:

class Wdget { ... };

cl ass Speci al Wdget: public Wdget { ... };

voi d updat e( Speci al W dget *psw);

Speci al Wdget sw; /!l swis a non-const object,

const Speci al Wdget & csw = sw; [/l but cswis a reference to
/1 it as a const object

updat e( &csw) ; /1l error! can't pass a const

/1 Special Wdget* to a function
/1l taking a Special Wdget*
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updat e( const _cast <Speci al W dget *>( &csw) ) ;
/! fine, the constness of &csw i s
/1 explicitly cast away (and
/! csw —and sw —may now be
/'l changed i nsi de update)

updat e( ( Speci al W dget *) &sw) ;
/1l same as above, but using a
/1l harder-to-recognize C style cast

W dget *pw = new Speci al W dget ;

updat e( pw) ; /[l error! pws type is Wdget*, but
/'l update takes a Special Wdget*

updat e( const _cast <Speci al W dget *>(pw) ) ;
/1 error! const_cast can be used only
/] to affect constness or vol atil eness,
/1 never to cast down the inheritance
/1 hierarch

By far the most common use of const _cast isto cast away the const ness of an object.

The second specialized type of cast, dynam c_cast , isused to perform safe casts down or across an inheritance hierarchy. That is,
you usedynam c_cast to cast pointers or references to base class objects into pointers or references to derived or sibling base class

objectsin such away that you can determine whether the casts succeeded.® Failed casts are indicated by anull pointer (when casting
pointers) or an exception (when casting references):

W dget *pw,

updat e( dynarmi c_cast <Speci al W dget *>(pw) ) ;
/1l fine, passes to update a pointer
/1l to the Special Wdget pw points to
/1 if pwreally points to one,
/1 otherw se passes the null pointer

voi d updat eVi aRef ( Speci al W dget & rsw) ;

updat eVi aRef (dynami c_cast <Speci al W dget &(*pw) ) ;
/1 fine, passes to updateVi aRef the
/'l Special Wdget pw points to if pw
/] really points to one, otherw se
/1l throws an exception

dynam c_cast sarerestricted to helping you navigate inheritance hierarchies. They cannot be applied to types lacking virtual
functions (see also Item 24), nor can they cast away const ness:
int firstNunber, secondNumber;
doubl e result = dynam c_cast <doubl e>(first Nunber)/secondNunber ;
/1 error! no inheritance is involved
const Speci al Wdget sw,
updat e( dynarmi c_cast <Speci al W dget *>( &sw) ) ;

/1l error! dynam c_cast can't cast
/1l away constness

If you want to perform a cast on atype where inheritance is not involved, you probably want ast ati ¢_cast . To cast const ness
away, you awayswant aconst _cast .

The last of the four new casting formsisr ei nt er pret _cast . Thisoperator is used to perform type conversions whose result is
nearly always implementation-defined. Asaresult, r ei nt er pr et _cast sarerarely portable.
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The most common use of r ei nt er pr et _cast isto cast between function pointer types. For example, suppose you have an array
of pointers to functions of a particular type:

t ypedef void (*FuncPtr)(); /1 a FuncPtr is a pointer
/1 to a function taking no
/1 args and returning void

FuncPtr funcPtrArray[10]; /1 funcPtrArray is an array
/1 of 10 FuncPtrs

Let us suppose you wish (for some unfathomable reason) to place a pointer to the following functioninto f uncPt r Arr ay:
i nt doSonet hi ng();

Y ou can't do what you want without a cast, because doSonet hi ng hasthe wrong typefor f uncPt r Arr ay. The functionsin
funcPtrArray returnvoi d, but doSonet hi ng returnsani nt :

funcPtrArray[ 0] = &dJoSonet hi ng; [l error! type m snatch

Areinterpret_cast letsyouforce compilersto seethingsyour way:

funcPtrArray[ 0] = /1 this conpiles
reinterpret _cast<FuncPtr>(&JoSonet hi ng);

Casting function pointersis not portable (C++ offers no guarantee that all function pointers are represented the same way), and in
some cases such casts yield incorrect results (see Item 31), so you should avoid casting function pointers unless your back's to the wall
and aknife's at your throat. A sharp knife. A very sharp knife.

If your compilers lack support for the new casting forms, you can use traditional castsin placeof st ati ¢c_cast,const _cast,
andrei nt er pret _cast . Furthermore, you can use macros to approximate the new syntax:

#defi ne static_cast (TYPE, EXPR) ((TYPE) (EXPR))

#defi ne const _cast ( TYPE, EXPR) ((TYPE) (EXPR))

#define reinterpret_cast (TYPE EXPR) ((TYPE)( EXPR))

Y ou'd use the approximations like this:
doubl e result = static_cast(double, firstNunber)/secondNunber;
updat e( const _cast ( Speci al Wdget*, &sw));
funcPtrArray[0] = reinterpret_cast(FuncPtr, &doSonething);

These approximations won't be as safe as the real things, of course, but they will simplify the process of upgrading your code when
your compilers support the new casts.

There is no easy way to emulate the behavior of adynam ¢_cast , but many libraries provide functions to perform safe
inheritance-based casts for you. If you lack such functions and you must perform this type of cast, you can fall back on C-style casts
for those, too, but then you forego the ability to tell if the casts fail. Needless to say, you can define a macro to look like

dynani c_cast , just asyou can for the other casts:

#define dynam c_cast ( TYPE, EXPR) (TYPE) (EXPR)
Remember that this approximation is not performing atrue dynam c_cast ; thereis no way to tell if the cast fails.

I know, I know, the new casts are ugly and hard to type. If you find them too unpleasant to look at, take solace in the knowledge that
C-style casts continue to be valid. However, what the new casts lack in beauty they make up for in precision of meaning and easy
recognizability. Programs that use the new casts are easier to parse (both for humans and for tools), and they allow compilersto
diagnose casting errors that would otherwise go undetected. These are powerful arguments for abandoning C-style casts, and there
may also be athird: perhaps making casts ugly and hard to typeis a good thing.
Back to Item 2: Prefer C++-style casts
Continue to Item 4: Avoid gratuitous default constructors

Item 3: Never treat arrays polymorphically.

One of the most important features of inheritance is that you can manipulate derived class objects through pointers and references to
base class objects. Such pointers and references are said to behave polymor phically — asif they had multiple types. C++ also allows
you to manipulate arrays of derived class objects through base class pointers and references. Thisis no feature at all, because it almost
never works the way you want it to.
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For example, suppose you have a class BST (for binary search tree objects) and a second class, Bal ancedBST, that inherits from
BST:

class BST { ... };
cl ass Bal ancedBST: public BST { ... };

In areal program such classes would be templates, but that's unimportant here, and adding all the template syntax just makes things
harder to read. For this discussion, we'll assume BST and Bal ancedBST objects containonly i nt s.

Consider afunction to print out the contents of each BST in an array of BSTs:
voi d printBSTArray(ostrean& s,

const BST array[],
i nt nunEl enents)

{
for (int i = 0; i < nunElenments; ++i) {
S << array[i]; /1 this assunes an
} /1l operator<< is defined
} /1 for BST objects

Thiswill work fine when you passit an array of BST objects:
BST BSTArray[ 10];

print BSTArray(cout, BSTArray, 10); /'l works fine

Consider, however, what happens when you pass pr i nt BSTAr r ay an array of Bal ancedBST objects:
Bal ancedBST bBSTArray[ 10];

print BSTArray(cout, bBSTArray, 10); /1l works fine?

Y our compilers will accept this function call without complaint, but look again at the loop for which they must generate code:

for (int i = 0; i < nunElenments; ++i) {
S << array[i];
}

Now, array[ i ] isrealy just shorthand for an expression involving pointer arithmetic: it standsfor * (ar r ay+i ) . We know that
ar r ay isapointer to the beginning of the array, but how far away from the memory location pointed to by ar r ay isthe memory
location pointed to by ar r ay+i ? The distance between themisi *si zeof (an obj ect i nt he array), becausethere arei
objectsbetweenar ray[ 0] andarray[i] . Inorder for compilersto emit code that walks through the array correctly, they must be
able to determine the size of the objectsin the array. Thisis easy for them to do. The parameter ar r ay is declared to be of type
array-of-BST, so each element of the array must be a BST, and the distance between ar r ay and ar r ay+i must be

i *si zeof (BST).

At least that's how your compilerslook at it. But if you've passed an array of Bal ancedBST objectsto pri nt BSTAr r ay, your
compilers are probably wrong. In that case, they'd assume each object in the array isthe size of a BST, but each object would actually
be the size of aBal ancedBST. Derived classes usually have more data members than their base classes, so derived class objects are
usually larger than base class objects. We thus expect aBal ancedBST object to be larger than a BST object. If it is, the pointer
arithmetic generated for pri nt BSTAr r ay will be wrong for arrays of Bal ancedBST objects, and there's no telling what will
happen when pr i nt BSTAr r ay isinvoked on aBal ancedBST array. Whatever does happen, it's a good bet it won't be pleasant.

The problem pops up in adifferent guise if you try to delete an array of derived class objects through a base class pointer. Here's one
way you might innocently attempt to do it:

/! delete an array, but first log a nessage about its

/1 deletion

voi d del eteArray(ostrean& | ogStream BST array[])

{
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| ogStream << "Del eting array at address "
<< static_cast<void*>(array) << '\n';

delete [] array;

}

Bal ancedBST *bal TreeArray = /'l create a Bal ancedBST
new Bal ancedBST[ 50] ; /1 array

del eteArray(cout, bal TreeArray); /1 log its deletion

Y ou can't seeit, but there's pointer arithmetic going on here, too. When an array is deleted, a destructor for each element of the array
must be called (see Item 8). When compilers see the statement

delete [] array;
they must generate code that does something like this:

/1 destruct the objects in *array in the inverse order
/1 in which they were constructed

for (int i = the nunber of elements in the array - 1,
i >= 0;
--i)
{
array[i].BST::~BST(); [l call array[i]'s

/] destructor

Just asthiskind of loop failed to work when you wrote it, it will fail to work when your compilers write it, too. The <language
specification says the result of deleting an array of derived class objects through a base class pointer is undefined, but we know what

that really means: executing the code is aimost certain to lead to grief. Polymorphism and pointer arithmetic smply don't mix. Array
operations amost always involve pointer arithmetic, so arrays and polymorphism don't mix.

Note that you're unlikely to make the mistake of treating an array polymorphically if you avoid having a concrete class (like
Bal ancedBST) inherit from another concrete class (such as BST). As Item 33 explains, designing your software so that concrete

classes never inherit from one another has many benefits. | encourage you to turn to Item 33 and read all about them.

Back to Item 3: Never treat arrays polymorphically
Continue to Operators

Item 4: Avoid gratuitous default constructors.

A default constructor (i.e., aconstructor that can be called with no arguments) is the C++ way of saying you can get something for
nothing. Constructors initialize objects, so default constructors initialize objects without any information from the place where the
object is being created. Sometimes this makes perfect sense. Objects that act like numbers, for example, may reasonably be initialized
to zero or to undefined values. Objects that act like pointers ( [tem 28) may reasonably beinitialized to null or to undefined values.
Data structures like linked lists, hash tables, maps, and the like may reasonably be initialized to empty containers.

Not all objectsfall into this category. For many objects, there is no reasonable way to perform a complete initialization in the absence
of outside information. For example, an object representing an entry in an address book makes no sense unless the name of the thing
being entered is provided. In some companies, al equipment must be tagged with a corporate ID number, and creating an object to
model a piece of equipment in such companiesis nonsensical unless the appropriate ID number is provided.

In a perfect world, classes in which objects could reasonably be created from nothing would contain default constructors and classesin
which information was required for object construction would not. Alas, oursis not the best of all possible worlds, so we must take
additional concerns into account. In particular, if a class lacks a default constructor, there are restrictions on how you can use that
class.

Consider aclass for company equipment in which the corporate ID number of the equipment is a mandatory constructor argument:

cl ass Equi pnent Pi ece {
public:
Equi prrent Pi ece(i nt | DNunber) ;
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Because Equi pnent Pi ece lacks adefault constructor, its use may be problematic in three contexts. The first is the creation of
arrays. Thereis, in general, no way to specify constructor arguments for objectsin arrays, so it is nhot usually possible to create arrays
of Equi prrent Pi ece objects:

Equi prment Pi ece best Pi eces[ 10] ; /'l error! No way to call
/'l Equi prent Pi ece ctors

Equi prment Pi ece *best Pi eces =
new Equi prent Pi ece[ 10] ; /'l error! sanme problem

There are three ways to get around this restriction. A solution for non-heap arrays isto provide the necessary arguments at the point
where the array is defined:

int ID1, 1D2, ID3, ..., |D10; // variables to hold
/'l equiprent | D nunbers

Equi prent Pi ece best Pi eces[] = { /1l fine, ctor argunents
Equi prment Pi ece(1D1), /] are provided
Equi prent Pi ece( 1 D2) ,
Equi prment Pi ece( | D3),

EqU| prent Pi ece( | D10)
i

Unfortunately, there is no way to extend this strategy to heap arrays.

A more general approach isto use an array of pointersinstead of an array of objects:

t ypedef Equi pment Pi ece* PEP; /[l a PEP is a pointer to
/'l an Equi pnent Pi ece

PEP best Pi eces[ 10]; // fine, no ctors called
PEP *best Pi eces = new PEP[ 10]; /1 also fine

Each pointer in the array can then be made to point to adifferent Equi prment Pi ece object:
for (int i =0; i < 10; ++i)
best Pi eces[i] = new Equi prent Pi ece( | D Nunber );

There are two disadvantages to this approach. First, you have to remember to delete all the objects pointed to by the array. If you
forget, you have aresource leak. Second, the total amount of memory you need increases, because you need the space for the pointers
aswell asthe space for the Equi prent Pi ece objects.

Y ou can avoid the space penalty if you allocate the raw memory for the array, then use "placement new" (see Iltem 8) to construct the
Equi prrent Pi ece objectsin the memory:
/! allocate enough raw nenory for an array of 10
/1 Equi pnent Pi ece objects; see Item8 for details on
/1 the operator new[] function
voi d *rawMenory =
operator new ] (10*si zeof (Equi pnent Pi ece) ) ;
/1 make bestPieces point to it so it can be treated as an
/1 Equi pnent Pi ece array
Equi prment Pi ece *best Pi eces =
stati c_cast <Equi pnent Pi ece*>(rawMenory);
/1 construct the Equi prent Pi ece objects in the nenory
/1 using "placenent new' (see ltem 8)
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for (int i =0; i < 10; ++i)
new (&best Pieces[i]) Equi pment Pi ece( | D Nunber );

Notice that you still have to provide a constructor argument for each Equi pnent Pi ece object. This technique (aswell asthe
array-of-pointersidea) allows you to create arrays of objects when a class lacks a default constructor; it doesn't show you how to
bypass required constructor arguments. There is no way to do that. If there were, it would defeat the purpose of constructors, whichis
to guarantee that objects are initialized.

The downside to using placement new, aside from the fact that most programmers are unfamiliar with it (which will make
maintenance more difficult), isthat you must manually call destructors on the objectsin the array when you want them to go out of
existence, then you must manually deallocate the raw memory by calling oper at or del et e[ ] (again, see Item 8):

/1 destruct the objects in bestPieces in the inverse
/1 order in which they were constructed
for (int i =9; i >=0; --i)

best Pi eces[i]. ~Equi pnent Pi ece();

/1 deall ocate the raw nenory
operator del ete[](rawnenory);

If you forget this requirement and use the normal array-deletion syntax, your program will behave unpredictably. That's because the
result of deleting a pointer that didn't come from the new operator is undefined:

delete [] bestPieces; /'l undefined! bestPieces
/1 didn't come fromthe new
/'l operator

For more information on the new operator, placement new and how they interact with constructors and destructors, see Item 8.

The second problem with classes lacking default constructors is that they are ineligible for use with many template-based container
classes. That's because it's a common requirement for such templates that the type used to instantiate the template provide a default
constructor. This requirement almost always grows out of the fact that inside the template, an array of the template parameter typeis
being created. For example, atemplate for an Ar r ay class might look something like this:

t enpl at e<cl ass T>
class Array {
public:

Array(int size);

private:
T *dat a;
3

t enpl at e<cl ass T>
Array<T>:: Array(int size)
{
data = new T[si ze]; /] calls T::T() for each
/1l element of the array

}

In most cases, careful template design can eliminate the need for a default constructor. For example, the standard vect or template
(which generates classes that act like extensible arrays) has no requirement that its type parameter have a default constructor.
Unfortunately, many templates are designed in a manner that is anything but careful. That being the case, classes without default
constructors will be incompatible with many templates. As C++ programmers learn more about template design, this problem should
recede in significance. How long it will take for that to happen, however, is anyone's guess.

The final consideration in the to-provide-a-default-constructor-or-not-to-provide-a-defaul t-constructor dilemma has to do with virtual
base classes (see Item E43). Virtual base classes lacking default constructors are a pain to work with. That's because the arguments for
virtual base class constructors must be provided by the most derived class of the object being constructed. As aresult, avirtual base
class lacking a default constructor requires that all classes derived from that class — no matter how far removed — must know about,
understand the meaning of, and provide for the virtual base class's constructors arguments. Authors of derived classes neither expect
nor appreciate this requirement.
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Because of the restrictions imposed on classes lacking default constructors, some people believe all classes should have them, even if
adefault constructor doesn't have enough information to fully initialize objects of that class. For example, adherents to this philosophy
might modify Equi prrent Pi ece asfollows:

cl ass Equi pnent Pi ece {
public:
Equi prrent Pi ece(i nt | DNunber = UNSPEC FI ED) ;

private:

static const int UNSPEC FlI ED, /1 magic | D nunber val ue
/'l meaning no | D was
H /1 specified
Thisalows Equi pnent Pi ece objectsto be created like this:
Equi prent Pi ece e; /'l now okay

Such atransformation almost always complicates the other member functions of the class, because there is no longer any guarantee
that the fields of an Equi pnent Pi ece object have been meaningfully initialized. Assuming it makes no sense to have an

Equi pnent Pi ece without an ID field, most member functions must check to seeif the ID is present. If it's not, they'll have to
figure out how to stumble on anyway. Often it's not clear how to do that, and many implementations choose a solution that offers
nothing but expediency: they throw an exception or they call a function that terminates the program. When that happens, it's difficult
to argue that the overall quality of the software has been improved by including a default constructor in a class where none was
warranted.

Inclusion of meaningless default constructors affects the efficiency of classes, too. If member functions have to test to seeif fields
have truly been initialized, clients of those functions have to pay for the time those tests take. Furthermore, they have to pay for the
code that goesinto those tests, because that makes executables and libraries bigger. They also have to pay for the code that handles the
cases where the testsfail. All those costs are avoided if a class's constructors ensure that all fields of an object are correctly initialized.
Often default constructors can't offer that kind of assurance, so it's best to avoid them in classes where they make no sense. That places
some limits on how such classes can be used, yes, but it also guarantees that when you do use such classes, you can expect that the
objects they generate are fully initialized and are efficiently implemented.
Back to Item 4: Avoid gratuitous default constructors
Continue to Item 5: Be wary of user-defined conversion functions

Operators

Overloadable operators — you gotta love 'em! They allow you to give your types the same syntax as C++'s built-in types, yet they let
you put a measure of power into the functions behind the operators that's unheard of for the built-ins. Of course, the fact that you can
make symbolslike"+" and "==" do anything you want also means you can use overloaded operators to produce programs best
described as impenetrable. Adept C++ programmers know how to harness the power of operator overloading without descending into
the incomprehensible.

Regrettably, it is easy to make the descent. Single-argument constructors and implicit type conversion operators are particularly
troublesome, because they can be invoked without there being any source code showing the calls. This can lead to program behavior
that is difficult to understand. A different problem arises when you overload operatorslike & and | | , because the shift from built-in
operator to user-defined function yields a subtle change in semantics that's easy to overlook. Finally, many operators are related to one
another in standard ways, but the ability to overload operators makes it possible to violate the accepted relationships.

In the items that follow, | focus on explaining when and how overloaded operators are called, how they behave, how they should relate
to one another, and how you can seize control of these aspects of overloaded operators. With the information in this chapter under
your belt, you'll be overloading (or not overloading) operators like a pro.
Back to Operators
Continue to Item 6: Distinguish between prefix and postfix forms of increment and decrement operators

Item 5: Be wary of user-defined conversion functions.

C++ alows compilers to perform implicit conversions between types. In honor of its C heritage, for example, the language allows
silent conversionsfrom char toi nt and fromshort todoubl e. Thisiswhy you can passashort to afunction that expectsa
doubl e and still have the call succeed. The more frightening conversionsin C — those that may lose information — are also present
in C++, including conversion of i nt toshort and doubl e to (of all things) char .
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Y ou can't do anything about such conversions, because they're hard-coded into the language. When you add your own types, however,
you have more control, because you can choose whether to provide the functions compilers are allowed to use for implicit type
conversions.

Two kinds of functions alow compilers to perform such conversions: single-argument constructors and implicit type conversion
operators. A single-argument constructor is a constructor that may be called with only one argument. Such a constructor may declare a
single parameter or it may declare multiple parameters, with each parameter after the first having a default value. Here are two
examples.

cl ass Nane { /1 for names of things
public:

Nane(const string& s); /1 converts string to

/1 Name

3
cl ass Rational { /! for rational nunbers
public:

Rational (i nt nunmerator = 0, /[l converts int to

i nt denomi nator = 1); /1 Rational

1

Animplicit type conversion operator is simply a member function with a strange-looking name: the word oper at or followed by a
type specification. Y ou aren't allowed to specify atype for the function's return value, because the type of the return value is basically
just the name of the function. For example, to allow Rat i onal objectsto beimplicitly converted to doubl es (which might be
useful for mixed-mode arithmetic involving Rat i onal objects), you might define classRat i onal like this:

class Rational {

public:
oper ator doubl e() const; /1 converts Rational to
H /1 doubl e
This function would be automatically invoked in contexts like this:
Rational r(1, 2); /1l r has the value 1/2
double d = 0.5 * r; /1 converts r to a doubl e,

/1 then does nultiplication

Perhaps all thisisreview. That's fine, because what | really want to explain iswhy you usually don't want to provide type conversion
functions of any ilk.

The fundamental problem isthat such functions often end up being called when you neither want nor expect them to be. The result can
be incorrect and unintuitive program behavior that is maddeningly difficult to diagnose.

Let usdea first with implicit type conversion operators, as they are the easiest case to handle. Suppose you have aclass for rational
numbers similar to the one above, and you'd liketo print Rat i onal objectsasif they were abuilt-in type. That is, you'd like to be
ableto do this:

Rational r(1, 2);

cout << r; /! should print "1/2"

Further suppose you forgot to write an oper at or << for Rat i onal objects. You would probably expect that the attempt to print r
would fail, because there is no appropriate oper at or << to call. Y ou would be mistaken. Y our compilers, faced with acall to a
function called oper at or << that takesaRat i onal , would find that no such function existed, but they would then try to find an
acceptable sequence of implicit type conversions they could apply to make the call succeed. The rules defining which sequences of
conversions are acceptable are complicated, but in this case your compilers would discover they could make the call succeed by
implicitly convertingr toadoubl e by calling Rat i onal ::oper at or doubl e. Theresult of the code above would be to print r
as afloating point number, not as arational number. Thisis hardly a disaster, but it demonstrates the disadvantage of implicit type
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conversion operators: their presence can lead to the wrong function being called (i.e., one other than the one intended).

The solution is to replace the operators with equivalent functions that don't have the syntactically magic names. For example, to allow
conversion of aRat i onal objectto adoubl e, replace oper at or doubl e with afunction called something like asDoubl e:

cl ass Rational {
public:

doubl e asDoubl e() const; /1 converts Rational
}; /! to double
Such a member function must be called explicitly:

Rational r(1, 2);

cout << r; /'l error! No operator<<
/1 for Rationals

cout << r.asDoubl e(); /1l fine, prints r as a
/1 doubl e

In most cases, the inconvenience of having to call conversion functions explicitly is more than compensated for by the fact that
unintended functions can no longer be silently invoked. In general, the more experience C++ programmers have, the more likely they
are to eschew type conversion operators. The members of -the committee working on the standard C++ library (see [tem E49 and Item
35), for example, are among the most experienced in the business, and perhaps that's why the st r i ng type they added to the library
contains no implicit conversion from ast ri ng object to a C-style char * . Instead, there's an explicit member function, c_st r, that
performs that conversion. Coincidence? | think not.

Implicit conversions via single-argument constructors are more difficult to eliminate. Furthermore, the problems these functions cause
are in many cases worse than those arising from implicit type conversion operators.

As an example, consider a class template for array objects. These arrays alow clients to specify upper and lower index bounds:

t enpl at e<cl ass T>

class Array {

public:
Array(int | owBound, int highBound);
Array(int size);

T& operator[](int index);

b

The first constructor in the class allows clients to specify arange of array indices, for example, from 10 to 20. As atwo-argument
constructor, this function isineligible for use as a type-conversion function. The second constructor, which allows clients to define
Ar r ay objects by specifying only the number of elementsin the array (in amanner similar to that used with built-in arrays), is
different. It can be used as atype conversion function, and that can lead to endless anguish.

For example, consider atemplate specialization for comparing Ar r ay<i nt > objects and some code that uses such objects:

bool operator==(const Array<int>& | hs,
const Array<int>& rhs);

Array<int> a(10);
Array<int> b(10);

for (int i =0; i < 10; ++i)
if (a==0Db[1]) { /! oops! "a" should be "a[i]"
do sonething for when
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a[i] and b[i] are equal;

el se {
do sonething for when they're not;

}

We intended to compare each element of a to the corresponding element in b, but we accidentally omitted the subscripting syntax
when we typed a. Certainly we expect thisto elicit all manner of unpleasant commentary from our compilers, but they will complain
not at all. That's because they see acall to oper at or == with arguments of type Ar r ay<i nt > (fora) andi nt (forb[i]), and
though thereis no oper at or == function taking those types, our compilers notice they can convert thei nt intoan Arr ay<i nt >
object by calling the Ar r ay<i nt > constructor that takesasinglei nt asan argument. This they proceed to do, thus generating code
for aprogram we never meant to write, one that looks like this:

for (int i =0; i < 10; ++i)

if (a == static_cast< Array<int> >(b[i]))

Each iteration through the loop thus compares the contents of a with the contents of atemporary array of sizeb[ i ] (whose contents
are presumably undefined). Not only is this unlikely to behave in a satisfactory manner, it is also tremendoudly inefficient, because
each time through the loop we both create and destroy atemporary Ar r ay<i nt > object (see Item 19).

The drawbacks to implicit type conversion operators can be avoided by simply failing to declare the operators, but single-argument
constructors cannot be so easily waved away. After all, you may really want to offer single-argument constructorsto your clients. At
the same time, you may wish to prevent compilers from calling such constructors indiscriminately. Fortunately, there is away to have
it al. Infact, there are two ways: the easy way and the way you'll have to use if your compilers don't yet support the easy way.

The easy way isto avail yourself of one of the newest C++ features, theexpl i ci t keyword. This feature was introduced specifically
to address the problem of implicit type conversion, and its use is about as straightforward as can be. Constructors can be declared
explicit,andif they are, compilers are prohibited from invoking them for purposes of implicit type conversion. Explicit
conversions are till legal, however:

t enpl at e<cl ass T>
class Array {

public:
.e;d)licit Array(int size); /'l note use of "explicit"”

3

Array<int> a(10); /1l okay, explicit ctors can
/'l be used as usual for
/1 object construction

Array<int> b(10); /'l al so okay

if (a==0b[i]) ... /1 error! no way to
Il inplicitly convert
/1l int to Array<int>

if (a == Array<int>(b[i])) ... /1 okay, the conversion

/1l fromint to Array<int> is
/1 explicit (but the logic of
/1l the code is suspect)

if (a == static_cast< Array<int> >(b[i]))
/1 equally okay, equally
/'l suspect

if (a == (Array<int>)b[i]) ... /Il Cstyle casts are al so
/1 okay, but the logic of
/1l the code is still suspect
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Inthe exampleusing st ati c_cast (seeltem 2), the space separating the two ">" charactersis no accident. If the statement were
written like this,
if (a == static_cast<Array<int>>(b[i]))

it would have a different meaning. That's because C++ compilers parse ">>" as a single token. Without a space between the ">"
characters, the statement would generate a syntax error.

If your compilers don't yet support expl i ci t, you'll haveto fall back on home-grown methods for preventing the use of
single-argument constructors as implicit type conversion functions. Such methods are obvious only after you've seen them.

| mentioned earlier that there are complicated rules governing which sequences of implicit type conversions are legitimate and which
are not. One of those rulesis that no sequence of conversionsis allowed to contain more than one user-defined conversion (i.e., acall
to asingle-argument constructor or an implicit type conversion operator). By constructing your classes properly, you can take
advantage of this rule so that the object constructions you want to allow are legal, but the implicit conversions you don't want to allow
areillegal.

Consider the Ar r ay template again. Y ou need away to allow an integer specifying the size of the array to be used as a constructor
argument, but you must at the same time prevent the implicit conversion of an integer into atemporary Ar r ay object. You
accomplish this by first creating anew class, Ar r ay Si ze. Objects of thistype have only one purpose: they represent the size of an
array that's about to be created. Y ou then modify Ar r ay's single-argument constructor to take an Ar r ay Si ze object instead of an
i nt . The code looks like this:

t enpl at e<cl ass T>
class Array {
public:

class ArraySi ze { /[l this class is new
public:

ArraySi ze(int nunkl enents): theSize(nuntl enents) {}

int size() const { return theSize; }

private:
int theSize;

}

Array(int | owBound, int highBound);
Array(ArraySi ze size); /!l note new decl aration

3
Here you've nested Ar r ay Si ze inside Ar r ay to emphasize the fact that it's always used in conjunction with that class. You've also
made Ar r ay Si ze publicin Ar r ay so that anybody can useit. Good.
Consider what happenswhen an Ar r ay object is defined via the class's single-argument constructor:

Array<int> a(10);
Y our compilers are asked to call a constructor inthe Ar r ay<i nt > classthat takesani nt , but there is no such constructor.
Compilersrealize they can convert thei nt argument into atemporary Ar r aySi ze object, and that Ar r ay Si ze object isjust what

the Ar r ay<i nt > constructor needs, so compilers perform the conversion with their usual gusto. This allows the function call (and
the attendant object construction) to succeed.

The fact that you can till construct Ar r ay objectswith ani nt argument is reassuring, but it does you little good unless the type
conversions you want to avoid are prevented. They are. Consider this code again:

bool operator==(const Array<int>& | hs,
const Array<int>& rhs);

Array<int> a(10);
Array<i nt> b(10);
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for (int i =0; i < 10; ++i)
if (a==0Db[i]) ... /1 oops! "a" should be "a[i]";
/1l this is now an error
Compilers need an abject of type Ar r ay<i nt > on the right-hand side of the "=="in order to call oper at or == for Arr ay<i nt >

objects, but there is no single-argument constructor taking ani nt argument. Furthermore, compilers cannot consider converting the
i nt into atemporary Ar r ay Si ze object and then creating the necessary Ar r ay<i nt > object from this temporary, because that
would call for two user-defined conversions, onefromi nt to ArraySi ze and onefrom ArraySi ze to Arr ay<i nt >. Such a
conversion sequence is verboten, so compilers must issue an error for the code attempting to perform the comparison.

Theuse of the Arr aySi ze classin this example might look like a special-purpose hack, but it's actually a specific instance of amore
general technique. Classes like Ar r ay Si ze are often called proxy classes, because each object of such aclass stands for (is aproxy
for) some other object. An Arr ay Si ze object isreally just a stand-in for the integer used to specify the size of the Ar r ay being
created. Proxy objects can give you control over aspects of your software's behavior — in this case implicit type conversions — that is
otherwise beyond your grasp, so it'swell worth your while to learn how to use them. How, you might wonder, can you acquire such
learning? One way isto turn to Item 30; it's devoted to proxy classes.

Before you turn to proxy classes, however, reflect a bit on the lessons of this Item. Granting compilers license to perform implicit type
conversions usually leads to more harm than good, so don't provide conversion functions unless you're sure you want them.

Back to [tem 5: Be wary of user-defined conversion functions
Continue to Item 7: Never overload &&, | | , or, .

Item 6: Distinguish between prefix and postfix forms of increment and decrement operators.

Long, long ago (the late '80s) in alanguage far, far away (C++ at that time), there was no way to distinguish between prefix and
postfix invocations of the ++ and - - operators. Programmers being programmers, they kvetched about this omission, and C++ was
extended to allow overloading both forms of increment and decrement operators.

There was a syntactic problem, however, and that was that overloaded functions are differentiated on the basis of the parameter types
they take, but neither prefix nor postfix increment or decrement takes an argument. To surmount this linguistic pothole, it was decreed
that postfix formstakeani nt argument, and compilers silently pass 0 asthat i nt when those functions are called:

class UPInt { /1 "unlimted precision int"
public:

UPI nt & operator++(); Il prefix ++

const UPInt operator++(int); [l postfix ++

UPI nt & operator--(); /Il prefix --

const UPInt operator--(int); /'l postfix --

UPI nt & operator+=(int); /1l a += operator for UPInts

// and ints

UPl nt i,
++i /1 calls i.operator++();
I+ /1 calls i.operator++(0);

--i /1 calls i.operator--();
i--: /'l calls i.operator--(0);

This convention isalittle on the odd side, but you'll get used to it. More important to get used to, however, is this: the prefix and
postfix forms of these operators return different types. In particular, prefix forms return areference, postfix formsreturn aconst
object. Welll focus here on the prefix and postfix ++ operators, but the story for the - - operators is analogous.

From your days as a C programmer, you may recall that the prefix form of the increment operator is sometimes called "increment and
fetch," while the postfix form is often known as "fetch and increment.” These two phrases are important to remember, because they all
but act as formal specifications for how prefix and postfix increment should be implemented:

/1 prefix form increment and fetch

UPI nt & UPI nt:: operat or ++()

{
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*this += 1; [/ increnent
return *this; /] fetch

}

[/l postfix form fetch and increnment
const UPInt UPInt::operator++(int)

{
UPI nt ol dval ue = *this; /] fetch
++(*this); [l increnment
return ol dval ue; /] return what was
} /1 fetched

Note how the postfix operator makes no use of its parameter. Thisistypical. The only purpose of the parameter is to distinguish prefix
from postfix function invocation. Many compilers issue warnings (see Item E48) if you fail to use named parameters in the body of the

function to which they apply, and this can be annoying. To avoid such warnings, a common strategy isto omit names for parameters
you don't plan to use; that's what's been done above.

It's clear why postfix increment must return an object (it's returning an old value), but why aconst object? Imagine that it did not.
Then the following would be legal:
UPInt i;

i ++++; /'l apply postfix increnent
Il tw ce

Thisisthe same as
i . operator++(0).operator++(0);

and it should be clear that the second invocation of oper at or ++ is being applied to the object returned from the first invocation.

There are two reasons to abhor this. Firgt, it's inconsistent with the behavior of the built-in types. A good rule to follow when
designing classesis when in doubt, do asthei nt sdo, and thei nt smost certainly do not allow double application of postfix
increment:

int i;

i ++++; [/l error!

The second reason is that double application of postfix increment almost never does what clients expect it to. As noted above, the
second application of oper at or ++ in adouble increment changes the value of the abject returned from the first invocation, not the
value of the original object. Hence, if

i ++++;

werelegal, i would beincremented only once. Thisis counterintuitive and confusing (for bothi nt sand UPI nt s), soit's best
prohibited.

C++ prohibitsit for i nt s, but you must prohibit it yourself for classes you write. The easiest way to do thisis to make the return type
of postfix increment aconst object. Then when compilers see

i ++++; /] same as

i . operator++(0).operator++(0);

they recognize that the const object returned from the first call to oper at or ++ isbeing used to call oper at or ++ again.

oper at or ++, however, isanon-const member function, so const objects — such asthose returned from postfix oper at or ++
— can't call it.2 If you've ever wondered if it makes sense to have functions return const objects, now you know: sometimesiit does,
and postfix increment and decrement are examples. (For another example, turn to ltem E21.)

If you're the kind who worries about efficiency, you probably broke into a sweat when you first saw the postfix increment function.
That function has to create atemporary object for its return value (see Item 19), and the implementation above also creates an explicit
temporary object (ol dVal ue) that has to be constructed and destructed. The prefix increment function has no such temporaries. This
leads to the possibly startling conclusion that, for efficiency reasons aone, clients of UPI nt should prefer prefix increment to postfix
increment unless they really need the behavior of postfix increment. Let us be explicit about this. When dealing with user-defined
types, prefix increment should be used whenever possible, because it'sinherently more efficient.

L et us make one more observation about the prefix and postfix increment operators. Except for their return values, they do the same
thing: they increment avalue. That is, they're supposed to do the same thing. How can you be sure the behavior of postfix increment is
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consistent with that of prefix increment? What guarantee do you have that their implementations won't diverge over time, possibly asa
result of different programmers maintaining and enhancing them? Unless you've followed the design principle embodied by the code
above, you have no such guarantee. That principleis that postfix increment and decrement should be implemented in terms of their
prefix counterparts. Y ou then need only maintain the prefix versions, because the postfix versions will automatically behavein a
consistent fashion.

Asyou can see, mastering prefix and postfix increment and decrement is easy. Once you know their proper return types and that the
postfix operators should be implemented in terms of the prefix operators, there's very little more to learn.

Back to Item 6: Distinguish between prefix and postfix forms of increment and decrement operators.
Continue to Item 8: Understand the different meanings of newand del et e

Item 7: Never overload &&, | | , or,

Like C, C++ employs short-circuit evaluation of boolean expressions. This means that once the truth or falsehood of an expression has
been determined, evaluation of the expression ceases, even if some parts of the expression haven't yet been examined. For example, in
this case,

char *p;

i-%.((p 1= 0) && (strlen(p) > 10))

there is no need to worry about invoking st r 1 en on p if it'sanull pointer, because if the test of p against O fails, st r | en will never
be called. Similarly, given

i nt rangeCheck(int index)

if ((index < lowerBound) || (index > upperBound))

}

i ndex will never be compared to upper Bound if it'slessthan | ower Bound.

Thisisthe behavior that has been drummed into C and C++ programmers since time immemorial, so thisiswhat they expect.
Furthermore, they write programs whose correct behavior depends on short-circuit evaluation. In the first code fragment above, for
example, itisimportant that st r | en not beinvoked if p isanull pointer, because the -standard for C++ states (as does the standard

for C) that the result of invoking st r | en on anull pointer is undefined.

C++ alows you to customize the behavior of the && and | | operators for user-defined types. Y ou do it by overloading the functions
oper at or & and oper at or | | , and you can do this at the global scope or on a per-class basis. If you decide to take advantage of
this opportunity, however, you must be aware that you are changing the rules of the game quite radically, because you are replacing
short-circuit semantics with function call semantics. That is, if you overload oper at or &&, what looks to you like this,

if (expressionl && expression2)

looks to compilers like one of these:

i f (expressionl. operator & expression2))
/1l when operator& is a
/1 menber function

i f (operator&&(expressionl, expression2)) .
/1l when operator& is a
/1 global function

This may not seem like that big adeal, but function call semantics differ from short-circuit semanticsin two crucia ways. First, when
afunction call is made, all parameters must be evaluated, so when calling the functions oper at or && and oper at or | | , both
parameters are evaluated. Thereis, in other words, no short circuit. Second, the language specification leaves undefined the order of
evaluation of parametersto afunction call, so there is no way of knowing whether expr essi onl or expr essi on2 will be
evaluated first. This stands in stark contrast to short-circuit evaluation, which always evaluates its arguments in |eft-to-right order.

Asaresult, if you overload && or | | , thereis no way to offer programmers the behavior they both expect and have come to depend
on. So don't overload && or | | .

The situation with the comma operator is similar, but before we delve into that, I'll pause and let you catch the breath you lost when
you gasped, "The comma operator? There's a comma operator?' Thereisindeed.
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The comma operator is used to form expressions, and you're most likely to run acrossit in the update part of af or loop. The
following function, for example, isbased on one in the second edition of Kernighan's and Ritchie's classic -The C Programming

Language (Prentice-Hall, 1988):

/1l reverse string s in place
voi d reverse(char s[])

{
for (int i =0, j = strlen(s)-1;
i< j;
++i, --j) /1 aha! the comma operator!
{
int ¢ =s[i];
s[i] =s[j];
s[i] = ¢
}
}

Here, i isincremented andj isdecremented inthefina part of thef or loop. It is convenient to use the comma operator here,
because only an expression isvalid in the final part of af or loop; separate statements to change the valuesof i andj would be

illegal.

Just asthere arerulesin C++ defining how && and | | behave for built-in types, there are rules defining how the comma operator
behaves for such types. An expression containing acommais evaluated by first evaluating the part of the expression to the left of the
comma, then evaluating the expression to the right of the comma; the result of the overall comma expression isthe value of the
expression on the right. So in the final part of the loop above, compilersfirst evaluate ++i , then - - j , and the result of the comma
expression isthe value returned from - - j .

Perhaps you're wondering why you need to know this. Y ou need to know because you need to mimic this behavior if you're going to
take it upon yourself to write your own comma operator. Unfortunately, you can't perform the requisite mimicry.

If you write oper at or, asanon-member function, you'll never be able to guarantee that the |eft-hand expression is evaluated before
the right-hand expression, because both expressions will be passed as arguments in afunction call (to oper at or, ). But you have no
control over the order in which afunction's arguments are evaluated. So the non-member approach is definitely out.

That leaves only the possibility of writing oper at or, asamember function. Even here you can't rely on the left-hand operand to the
comma operator being evaluated first, because compilers are not constrained to do things that way. Hence, you can't overload the
comma operator and also guarantee it will behave the way it's supposed to. It therefore seems imprudent to overload it at all.

Y ou may be wondering if there's an end to this overloading madness. After al, if you can overload the comma operator, what can't
you overload? Asit turns out, there are limits. Y ou can't overload the following operators:

. F s ?:

new del ete si zeof typeid

static_cast dynam c_cast const _cast reinterpret_cast
Y ou can overload these:

operator new operator del ete

oper at or new | operator del ete[]

+ - * / % N & | ~

| = < > 4= -= * = /| = 5

Nz &= | = << >> >>= <<= == I =

<= >= && || ++ -- , ->F L >

O[]

(For information on the newand del et e operators, aswell asoper at or new, oper at or del et e, oper at or new ], and
oper at or del et e[ ], seeltem 8.)

Of course, just because you can overload these operators is no reason to run off and do it. The purpose of operator overloading isto
make programs easier to read, write, and understand, not to dazzle others with your knowledge that comma s an operator. If you don't
have a good reason for overloading an operator, don't overload it. Inthe case of &&, | | , and, , it'sdifficult to have a good reason,
because no matter how hard you try, you can't make them behave the way they're supposed to.
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Back to [tem 7: Never overload & &, ||, or ,.
Continue to Exceptions

Item 8: Understand the different meanings of newand del et e.

It occasionally seems as if people went out of their way to make C++ terminology difficult to understand. Case in point: the difference
between the new operator and oper at or new.

When you write code like this,

string *ps = new string("Menory Managenent");
the newyou are using is the new operator. This operator is built into the language and, like si zeof , you can't change its meaning: it
always does the same thing. What it doesis twofold. First, it alocates enough memory to hold an object of the type requested. In the

example above, it allocates enough memory to hold ast r i ng object. Second, it calls a constructor to initialize an object in the
memory that was allocated. The new operator always does those two things; you can't change its behavior in any way.

What you can change is how the memory for an object is allocated. The new operator calls afunction to perform the requisite memory
allocation, and you can rewrite or overload that function to change its behavior. The name of the function the new operator callsto
allocate memory isoper at or new. Honest.

The oper at or newfunction is usually declared like this:

void * operator new(size_t size);
Thereturn typeisvoi d*, because this function returns a pointer to raw, uninitialized memory. (If you like, you can write a version of
oper at or newthat initializes the memory to some value before returning a pointer to it, but thisis not commonly done.) The

si ze_t parameter specifies how much memory to allocate. Y ou can overload oper at or new by adding additional parameters, but
the first parameter must always be of type si ze_t . (For information on writing oper at or new, consult Items E8-E10.)

You'll probably never want to call oper at or newdirectly, but on the off chance you do, you'll call it just like any other function:
void *rawienory = operator new sizeof (string));

Here oper at or newwill return a pointer to a chunk of memory large enough to hold ast r i ng object.

Likermal | oc, oper at or newsonly responsibility isto allocate memory. It knows nothing about constructors. All oper at or new
understands is memory allocation. It isthe job of the new operator to take the raw memory that oper at or newreturnsand
transform it into an object. When your compilers see a statement like

string *ps = new string("Mnory Managenent");

they must generate code that more or less corresponds to this (see Items E8 and E10, as well as the sidebar to my article on counting
objects, for amore detailed treatment of this point):

void *nenory = /1 get raw nenory
operator new(sizeof(string)); [l for a string
/'l object
call string::string("Mnory Managenent") /[l initialize the
on *menory;, /1 object in the
[l menory
string *ps = /1 make ps point to
static_cast<string*>(nenory); /1l the new obj ect

Notice that the second step above involves calling a constructor, something you, a mere programmer, are prohibited from doing. Y our
compilers are unconstrained by mortal limits, however, and they can do whatever they like. That's why you must use the new operator
if you want to conjure up a heap-based object: you can't directly call the constructor necessary to initialize the object (including such
crucial components asiits vtbl — see Item 24).

Placement new

There are times when you really want to call a constructor directly. Invoking a constructor on an existing object makes no sense,
because constructors initialize objects, and an object can only beinitialized — given itsfirst value — once. But occasionally you have

file://IC|/mauro/Mec/M.htm (26 of 218) [2001-01-17 10:54:25]


file:///C|/mauro/EC/E_FR.HTM#120851
file:///C|/mauro/EC/E_FR.HTM#1986
file:///C|/mauro/EC/E_FR.HTM#120851
file:///C|/mauro/EC/E_FR.HTM#1986
file:///C|/mauro/MAGAZINE/CO_FRAME.HTM#sidebar
file:///C|/mauro/MAGAZINE/CO_FRAME.HTM
file:///C|/mauro/MAGAZINE/CO_FRAME.HTM

More Effective C++ | Book

some raw memory that's already been allocated, and you need to construct an object in the memory you have. A special version of
oper at or newcaled placement new alowsyou to do it.

As an example of how placement new might be used, consider this:
cl ass Wdget {
public:
W dget (i nt wi dget Si ze);

3
W dget * construct Wdget | nBuffer(void *buffer,

i nt widgetSize)
{

}

This function returns a pointer to aW dget object that's constructed within the buffer passed to the function. Such afunction might
be useful for applications using shared memory or memory-mapped 1/O, because objects in such applications must be placed at
specific addresses or in memory allocated by special routines. (For a different example of how placement new can be used, see Item
4)

return new (buffer) Wdget(w dgetSi ze);

Insideconst ruct W dget | nBuf f er , the expression being returned is
new (buffer) Wdget(w dgetSize)

Thislooks alittle strange at first, but it's just a use of the new operator in which an additional argument (buf f er ) is being specified
for theimplicit call that the new operator makesto oper at or new. Theoper at or newthus called must, in addition to the
mandatory si ze_t argument, accept avoi d* parameter that points to the memory the object being constructed is to occupy. That
oper at or newis placement new, and it looks like this:

void * operator new(size t, void *location)

{
}

Thisis probably simpler than you expected, but thisis all placement new needs to do. After all, the purpose of oper at or newisto
find memory for an object and return a pointer to that memory. In the case of placement new, the caller already knows what the
pointer to the memory should be, because the caller knows where the object is supposed to be placed. All placement new has to do,
then, is return the pointer that's passed into it. (The unused (but mandatory) si ze_t parameter has no name to keep compilers from
complaining about its not being used; see Item 6.) Placement new s part of the standard C++ library (see Item E49). To use placement
new, all you haveto dois#i ncl ude <new> (or, if your compilers don't yet support the new-style header names (again, see Item
E49), <new. h>).

return | ocation;

If we step back from placement new for a moment, we'll see that the relationship between the new operator and oper at or new,
though you want to create an object on the heap, use the new operator. It both allocates memory and calls a constructor for the object.
If you only want to allocate memory, call oper at or new; no constructor will be called. If you want to customize the memory
allocation that takes place when heap objects are created, write your own version of oper at or new and use the new operator; it will
automatically invoke your custom version of oper at or new. If you want to construct an object in memory you've already got a
pointer to, use placement new.

(For additional insightsinto variants of newand del et e, see Item E7 and my article on counting objects.)

Deletion and Memory Deallocation

To avoid resource leaks, every dynamic allocation must be matched by an equal and opposite deallocation. The function oper at or
del et e istothebuilt-in del et e operator asoper at or newisto the new operator. When you say something like this,

string *ps;

deI ete ps; /'l use the del ete operator
your compilers must generate code both to destruct the object ps points to and to deallocate the memory occupied by that object.

The memory deallocation is performed by the oper at or del et e function, which isusually declared like this:
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voi d operator del ete(void *nenoryToBeDeal | ocat ed);

Hence,
del ete ps;

causes compilers to generate code that approximately correspondsto this:

ps->~string(); /1 call the object's dtor
operator del ete(ps); /1 deall ocate the nenory
/1l the object occupied

One implication of thisisthat if you want to deal only with raw, uninitialized memory, you should bypassthe newand del et e
operators entirely. Instead, you should call oper at or newto get the memory and oper at or del et e toreturn it to the system:

void *buffer = /1 allocate enough
oper ator new( 50*si zeof (char)); /1 menmory to hold 50
// chars; call no ctors
operator del ete(buffer); /'l deall ocate the nenory;

// call no dtors

Thisisthe C++ equivalent of calingmal | oc andfr ee.

If you use placement newto create an object in some memory, you should avoid using the del et e operator on that memory. That's
because the del et e operator callsoper at or del et e to deallocate the memory, but the memory containing the object wasn't
alocated by oper at or newin thefirst place; placement new just returned the pointer that was passed to it. Who knows where that
pointer came from? Instead, you should undo the effect of the constructor by explicitly calling the object's destructor:

/1 functions for allocating and deal |l ocating nenory in
/'l shared menory

void * mal |l ocShared(size t size);

voi d freeShared(void *nmenory);

void *sharedMenory = nal | ocShar ed(si zeof (Wdget));

/|l as above,
/1 placenent
/!l newis used

W dget *pw =

construct Wdget | nBuf f er (sharedMenory, 10);

del ete pw, /! undefined! sharedMenory cane from
/1 mall ocShared, not operator new

pw >~W dget () ; /1 fine, destructs the Wdget pointed to
/1l by pw, but doesn't deallocate the
/1 menory containing the Wdget

freeShar ed( pw) ; /1 fine, deallocates the nmenory pointed
/1l to by pw, but calls no destructor

As this example demonstrates, if the raw memory passed to placement new was itself dynamically allocated (through some
unconventional means), you must still deallocate that memory if you wish to avoid a memory leak. (See the sidebar to my article on

counting objects for information on "placement del et e".)

Arrays

So far so good, but there's farther to go. Everything we've examined so far concerns itself with only one object at atime. What about
array allocation? What happens here?
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string *ps = new string[10]; /1 allocate an array of
/1 objects

The newbeing used is still the new operator, but because an array is being created, the new operator behaves dightly differently from
the case of single-object creation. For one thing, memory is no longer allocated by oper at or new. Instead, it's alocated by the
array-allocation equivalent, afunction called oper at or newf ] (often referred to as"array new.") Like oper at or new,

oper at or new ] can be overloaded. This allows you to seize control of memory allocation for arraysin the same way you can
control memory allocation for single objects (but see Item E8 for some caveats on this).

(oper at or new ] isardatively recent addition to C++, so your compilers may not support it yet. If they don't, the global version
of oper at or newwill be used to allocate memory for every array, regardless of the type of objectsin the array. Customizing
array-memory allocation under such compilersis daunting, because it requires that you rewrite the global oper at or new. Thisisnot
atask to be undertaken lightly. By default, the global oper at or new handles all dynamic memory allocation in a program, so any
changein its behavior has a dramatic and pervasive effect. Furthermore, there is only one global oper at or newwith the "normal”
signature (i.e., taking thesinglesi ze_t parameter — see Iltem E9), so if you decide to claim it as your own, you instantly render
your software incompatible with any library that makes the same decision. (See also Item 27.) Asaresult of these considerations,
custom memory management for arraysis not usually areasonable design decision for compilers lacking support for oper at or

new].)

The second way in which the new operator behaves differently for arrays than for objectsisin the number of constructor callsit
makes. For arrays, a constructor must be called for each object in the array:

string *ps = /1l call operator newf] to allocate
new string[ 10]; /!l menory for 10 string objects,
/1 then call the default string
/] ctor for each array el ement

Similarly, when the del et e operator isused on an array, it calls adestructor for each array element and then callsoper at or
del et e[ ] to deallocate the memory:

delete [] ps; /1 call the string dtor for each
/'l array elenment, then call
/'l operator delete[] to
/'l deallocate the array's nenory

Just as you can replace or overload oper at or del et e, you can replace or overload oper at or del et e[ ] . There are some
restrictions on how they can be overloaded, however; consult agood C++ text for details. (For ideas on good C++ texts, see the
recommendations beginning on page 285.)

So there you haveit. Thenewand del et e operators are built-in and beyond your control, but the memory allocation and
deallocation functions they call are not. When you think about customizing the behavior of thenewand del et e operators, remember
that you can't really do it. Y ou can modify how they do what they do, but what they do is fixed by the language.
Back to Item 8: Understand the different meanings of new and delete
Continue to Item 9: Use destructors to prevent resource leaks

Exceptions

The addition of exceptions to C++ changes things. Profoundly. Radically. Possibly uncomfortably. The use of raw, unadorned
pointers, for example, becomes risky. Opportunities for resource leaks increase in number. It becomes more difficult to write
constructors and destructors that behave the way we want them to. Special care must be taken to prevent program execution from
abruptly halting. Executables and libraries typically increase in size and decrease in speed.

And these are just the things we know. There is much the C++ community does not know about writing programs using exceptions,
including, for the most part, how to do it correctly. Thereis as yet no agreement on a body of techniques that, when applied routinely,
leads to software that behaves predictably and reliably when exceptions are thrown. (For insight into some of the issues involved, see
the article by Tom Cargill. For information on recent progressin dealing with these issues, see the articles by Jack Reeves and Herb

Sutter.)

We do know this much: programs that behave well in the presence of exceptions do so because they were designed to, not because
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they happen to. Exception-safe programs are not created by accident. The chances of a program behaving well in the presence of
exceptions when it was not designed for exceptions are about the same as the chances of a program behaving well in the presence of
multiple threads of control when it was not designed for multi-threaded execution: about zero.

That being the case, why use exceptions? Error codes have sufficed for C programmers ever since C was invented, so why mess with
exceptions, especialy if they're as problematic as | say? The answer is simple: exceptions cannot be ignored. If afunction signals an
exceptional condition by setting a status variable or returning an error code, there is no way to guarantee the function's caller will
check the variable or examine the code. As aresult, execution may continue long past the point where the condition was encountered.
If the function signals the condition by throwing an exception, however, and that exception is not caught, program execution
immediately ceases.

Thisis behavior that C programmers can approach only by using set j np and | ongj np. But | ongj np exhibits a serious deficiency
when used with C++: it failsto call destructors for local objects when it adjusts the stack. Most C++ programs depend on such
destructors being called, so set j np and | ongj np make a poor substitute for true exceptions. If you need away of signaling
exceptional conditions that cannot be ignored, and if you must ensure that local destructors are called when searching the stack for
code that can handle exceptional conditions, you need C++ exceptions. It's as simple as that.

Because we have much to learn about programming with exceptions, the Items that follow comprise an incompl ete guide to writing
exception-safe software. Nevertheless, they introduce important considerations for anyone using exceptions in C++. By heeding the
guidance in the material below (and in the magazine articles on this CD), you'll improve the correctness, robustness, and efficiency of
the software you write, and you'll sidestep many problems that commonly arise when working with exceptions.

Back to Exceptions
Continue to Item 10: Prevent resource leaks in constructors

Item 9: Use destructors to prevent resource leaks.
Say good-bye to pointers. Admit it: you never really liked them that much anyway.

Okay, you don't have to say good-bye to all pointers, but you do need to say sayonara to pointers that are used to manipulate local
resources. Suppose, for example, you're writing software at the Shelter for Adorable Little Animals, an organization that finds homes
for puppies and kittens. Each day the shelter creates afile containing information on the adoptions it arranged that day, and your jobis
to write a program to read these files and do the appropriate processing for each adoption.

A reasonable approach to thistask isto define an abstract base class, ALA ("Adorable Little Animal™), plus concrete derived classes
for puppies and kittens. A virtual function, pr ocessAdopt i on, handles the necessary species-specific processing:

e p— — _\"-\\\
& &C¢& &A™ &

class ALA {
public:
virtual void processAdoption() = O;
1
cl ass Puppy: public ALA {
public:
virtual void processAdoption();
3
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class Kitten: public ALA {
public:
virtual void processAdoption();

-

You'll need afunction that can read information from a file and produce either a Puppy object or aKi t t en object, depending on the
information in the file. Thisis a perfect job for avirtual constructor, akind of function described in Item 25. For our purposes here,

the function's declaration is all we need:
/1l read animal information froms, then return a pointer
/[l to a newy allocated object of the appropriate type
ALA * readALA(i stream& s);

The heart of your program is likely to be afunction that looks something like this:
voi d processAdoptions(istream& dataSour ce)

whi |l e (dat aSource) { /1l while there's data
ALA *pa = readALA(dat aSource); /1 get next aninal
pa- >pr ocessAdopti on(); /| process adoption
del ete pa; /1 del ete object that
} /! readALA returned

}

This function loops through the information in dat aSour ce, processing each entry asit goes. The only mildly tricky thing isthe
need to remember to delete pa at the end of each iteration. Thisis necessary because r ead ALA creates a new heap object each time
it's called. Without the call to del et e, the loop would contain aresource leak.

Now consider what would happen if pa- >pr ocessAdopt i on threw an exception. pr ocessAdopt i ons failsto catch
exceptions, so the exception would propagate to pr ocessAdopt i ons'scaler. In doing so, al statementsin pr ocessAdopt i ons
after the call to pa- >pr ocessAdopt i on would be skipped, and that means pa would never be deleted. As aresult, anytime

pa- >pr ocessAdopt i on throws an exception, pr ocessAdopt i ons contains aresource leak.

Plugging the leak is easy enough,
voi d processAdoptions(i stream& dataSour ce)

whi |l e (dat aSource) {
ALA *pa = readALA(dat aSource);

try {
pa- >pr ocessAdopti on();

}

catch (...) { /1 catch all exceptions

del ete pa; [/l avoid resource | eak when an

/1l exception is thrown

t hr ow, /'l propagate exception to caller
}

del ete pa; /1 avoid resource | eak when no
} /1l exception is thrown

}

but then you have to litter your code witht ry and cat ch blocks. More importantly, you are forced to duplicate cleanup code that is
common to both normal and exceptional paths of control. In this case, the call to del et e must be duplicated. Like all replicated code,
thisis annoying to write and difficult to maintain, but it also feels wrong. Regardless of whether we leave pr ocessAdopt i ons by a
normal return or by throwing an exception, we need to delete pa, so why should we have to say that in more than one place?

We don't have to if we can somehow move the cleanup code that must always be executed into the destructor for an object local to
pr ocessAdopt i ons. That's because local objects are aways destroyed when leaving afunction, regardless of how that functionis
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exited. (The only exception to thisruleiswhen you call | ongj np, and this shortcoming of | ongj np isthe primary reason why C++
has support for exceptionsin thefirst place.) Our real concern, then, is moving thedel et e from pr ocessAdopt i ons into a
destructor for an object local to pr ocessAdopt i ons.

The solution is to replace the pointer pa with an object that acts like a pointer. That way, when the pointer-like object is
(automatically) destroyed, we can have its destructor call del et e. Objects that act like pointers, but do more, are called smart
pointers, and, as [tem 28 explains, you can make pointer-like objects very smart indeed. In this case, we don't need a particularly
brainy pointer, we just need a pointer-like object that knows enough to delete what it points to when the pointer-like object goes out of
Scope.

It's not difficult to write a class for such objects, but we don't need to. The standard C++ library (see Item E49) contains a class
template called aut o_pt r that doesjust what we want. Each aut o_pt r class takes a pointer to a heap object in its constructor and
deletes that object in its destructor. Boiled down to these essential functions, aut o_pt r lookslikethis:

t enpl at e<cl ass T>
class auto_ptr {

public:
auto _ptr(T *p = 0): ptr(p) {} /1l save ptr to object
~auto_ptr() { delete ptr; } /1 delete ptr to object
private:
T *ptr; /1l raw ptr to object
3

The standard version of aut o_pt r ismuch fancier, and this stripped-down implementation isn't suitable for real use3 (we must add
at least the copy constructor, assignment operator, and pointer-emulating functions discussed in Item 28), but the concept behind it
should be clear: useaut o_pt r objectsinstead of raw pointers, and you won't have to worry about heap abjects not being deleted, not
even when exceptions are thrown. (Because the aut o_pt r destructor uses the single-object form of del et e, aut o_pt r isnot
suitable for use with pointersto arrays of objects. If you'd like an aut o_pt r -like template for arrays, you'll have to write your own.
In such cases, however, it's often a better design decisionto useavect or instead of an array, anyway.)

Using an aut o_pt r aobject instead of araw pointer, pr ocessAdopt i ons lookslikethis:
voi d processAdoptions(i stream& dataSource)

{
whi |l e (dat aSource) {
aut o_ptr<ALA> pa(readALA(dat aSource));
pa- >pr ocessAdoption();
}
}

Thisversion of pr ocessAdopt i ons differsfrom the original in only two ways. First, pa isdeclared to be an aut o_pt r <ALA>
object, not araw ALA* pointer. Second, thereisno del et e statement at the end of the loop. That'sit. Everything elseisidentical,
because, except for destruction, aut o_pt r objects act just like normal pointers. Easy, huh?

Theideabehind aut o_pt r — using an abject to store a resource that needs to be automatically released and relying on that object's
destructor to release it — applies to more than just pointer-based resources. Consider afunction in a GUI application that needs to
create awindow to display some information:

/1 this function may | eak resources if an exception
/1 is thrown
voi d di spl ayl nfo(const Information& i nfo)

{
W NDOW HANDLE w( cr eat eW ndow() ) ;

di splay info in wi ndow corresponding to w

destr oyW ndowm( w) ;
}

Many window systems have C-like interfaces that use functionslike cr eat eW ndowand dest r oyW ndowto acquire and release
window resources. If an exception is thrown during the process of displaying i nf o inw, the window for which wis ahandle will be
lost just as surely as any other dynamically allocated resource.
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The solution is the same as it was before. Create a class whose constructor and destructor acquire and rel ease the resource:

/1l class for acquiring and rel easing a wi ndow handl e
cl ass W ndowHandl e {
public:
W ndowHandl e( W NDOW HANDLE handl e): w(handl e) {}
~W ndowHandl e() { destroyWndow(w); }

operator W NDOW HANDLE() { return w;, } /'l see bel ow

private:
W NDOW_HANDLE w;

/1 The followi ng functions are declared private to prevent

/1 multiple copies of a WNDOWNV HANDLE from bei ng creat ed.

/1l See ltem 28 for a discussion of a nore flexible approach.

W ndowHand| e( const W ndowHandl| e&) ;

W ndowHand| e& oper at or =(const W ndowHandl e&) ;

3

Thislooksjust liketheaut o_pt r template, except that assignment and copying are explicitly prohibited (see Item E27), and thereis
an implicit conversion operator that can be used to turn aW ndowHandl e into a W NDOW HANDLE. This capability is essential to
the practical application of aW ndowHandl e object, because it means you can use aW ndowHandl e just about anywhere you
would normally use araw W NDOW HANDLE. (See Item 5, however, for why you should generally be leery of implicit type
conversion operators.)

Given the W ndowHandl e class, we can rewrite di spl ayl nf o asfollows:
/1 this function avoids |eaking resources if an

/| exception is thrown
voi d di spl ayl nfo(const |nformation& info)

{
W ndowHandl e W creat eW ndow() ) ;

display info in w ndow corresponding to w;

}

Even if an exception isthrown within di spl ayl nf o, the window created by cr eat eW ndowwill aways be destroyed.

By adhering to the rule that resources should be encapsulated inside objects, you can usually avoid resource leaks in the presence of
exceptions. But what happensif an exception is thrown while you're in the process of acquiring aresource, e.g., while you'rein the
constructor of aresource-acquiring class? What happens if an exception is thrown during the automatic destruction of such resources?
Don't constructors and destructors call for specia techniques? They do, and you can read about them in Items 10 and 11.

Back to [tem 9: Use destructors to prevent resource leaks
Continue to Item 11: Prevent exceptions from leaving destructors

Item 10: Prevent resource leaks in constructors.

Imagine you're devel oping software for a multimedia address book. Such an address book might hold, in addition to the usual textual
information of a person's name, address, and phone numbers, a picture of the person and the sound of their voice (possibly giving the
proper pronunciation of their name).

To implement the book, you might come up with adesign like this:

cl ass | mage { /1 for image data
public:

| mage(const string& i mageDat aFi | eNane) ;
3
class Audiodip { [/l for audio data
public:

Audi od i p(const string& audi oDat aFi | eNane) ;
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3
cl ass PhoneNunber { U /1 for holding phone nunbers
cl ass BookEntry { /1l for each entry in the
public: /! address book
BookEntry(const string& nane,
const string& address = "",
const string& i mageFil eNane = "",
const string& audi odipFileName = "");
~BookEntry();
/'l phone nunbers are added via this function
voi d addPhoneNunber (const PhoneNunber & nunber);
private:
string theNane; /'l person's nane
string theAddress; /1 their address
I i st <PhoneNunber > t hePhones; /'l their phone nunbers
| mage *t hel mage; /1 their imge
Audi oCl i p *t heAudi od i p; /1 an audio clip fromthem
3

Each Book Ent r y must have name data, so you require that as a constructor argument (see Item 3), but the other fields — the

person's address and the names of files containing image and audio data— are optional. Note the use of thel i st classto hold the
person's phone numbers. Thisis one of several container classes that are part of the standard C++ library (see ltem E49 and Item 35).

A straightforward way to write the Book Ent r y constructor and destructor is as follows:

BookEntry: : BookEntry(const string& nane,
const string& address,
const string& i mageFi | eNane,
Const string& audi od i pFil eNane)
t heNane( nane), theAddress(address),
t hel mage(0), theAudi odip(0)

if (imageFileNanme = "") {
t hel mage = new | mage(i mageFi | eNane) ;

}

if (audioCipFileNane !'="") {
t heAudi oCl i p = new Audi o i p(audi od i pFi | eNane) ;
}
}

BookEntry: : ~BookEntry()
{

del et e thel mage;

del ete theAudi od i p;

}

The constructor initializes the pointerst hel mage andt heAudi od i p to null, then makes them point to real objectsif the
corresponding arguments are non-empty strings. The destructor deletes both pointers, thus ensuring that a Book Ent r y object doesn't
giveriseto aresource leak. Because C++ guaranteesiit's safe to delete null pointers, Book Ent r y's destructor need not check to seeif
the pointers actually point to something before deleting them.
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Everything looks fine here, and under normal conditions everything is fine, but under abnormal conditions — under exceptional
conditions — things are not fine at all.

Consider what will happen if an exception is thrown during execution of this part of the BookEnt r y constructor:

if (audiodipFileNane !'="") {
t heAudi ol i p = new Audi oQ i p(audi o i pFi | eNane) ;
}

An exception might arise because oper at or new (see ltem 8) is unable to allocate enough memory for an Audi od i p object. One
might also arise because the Audi oCl i p constructor itself throws an exception. Regardless of the cause of the exception, if oneis
thrown within the Book Ent r y constructor, it will be propagated to the site where the Book Ent r y object is being created.

Now, if an exception isthrown during creation of the object t heAudi oCl i p issupposed to point to (thus transferring control out of
the Book Ent r y constructor), who deletes the object that t hel mage aready points to? The obvious answer isthat BookEnt ry's
destructor does, but the obvious answer iswrong. Book Ent r y's destructor will never be called. Never.

C++ destroys only fully constructed objects, and an object isn't fully constructed until its constructor has run to completion. So if a
BookEnt ry object b iscreated as alocal abject,

voi d t est BookEntryC ass()

{
BookEntry b("Addi son-\Wesl ey Publishing Conpany",

"One Jacob Way, Reading, MA 01867");

}

and an exception is thrown during construction of b, b's destructor will not be called. Furthermore, if you try to take matters into your
own hands by allocating b on the heap and then calling del et e if an exception is thrown,

voi d t est BookEnt ryd ass()

{
BookEntry *pb = 0;
try {
pb = new BookEntry("Addi son-Wsl ey Publi shi ng Conpany",
"One Jacob Way, Reading, MA 01867");
}
catch (...) { /1 catch all exceptions
del ete pb; /] delete pb when an
/1 exception is thrown
t hr ow; /| propagate exception to
} /1 caller
del ete pb; /1 delete pb normally
}

you'll find that the | mage object alocated inside Book Ent r y's constructor is till lost, because no assignment is made to pb unless
the new operation succeeds. If Book Ent r y's constructor throws an exception, pb will be the null pointer, so deleting it inthecat ch
block does nothing except make you fed better about yourself. Using the smart pointer classaut o_pt r <BookEnt r y> (see ltem 9)
instead of araw BookEnt r y* won't do you any good either, because the assignment to pb still won't be made unless the new
operation succeeds.

There is areason why C++ refuses to call destructors for objects that haven't been fully constructed, and it's not simply to make your
life more difficult. It's because it would, in many cases, be anonsensical thing — possibly a harmful thing — to do. If a destructor
were invoked on an object that wasn't fully constructed, how would the destructor know what to do? The only way it could know
would be if bits had been added to each object indicating how much of the constructor had been executed. Then the destructor could
check the bits and (maybe) figure out what actions to take. Such bookkeeping would slow down constructors, and it would make each
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object larger, too. C++ avoids this overhead, but the price you pay is that partially constructed objects aren't automatically destroyed.
(For an example of asimilar trade-off involving efficiency and program behavior, turnto Item E13.)

Because C++ won't clean up after objects that throw exceptions during construction, you must design your constructors so that they
clean up after themselves. Often, thisinvolves simply catching all possible exceptions, executing some cleanup code, then rethrowing
the exception so it continues to propagate. This strategy can be incorporated into the Book Ent r y constructor like this:

BookEntry: : BookEntry(const string& nane,
const string& address,
const string& i mageFi | eNane,
const string& audi od i pFil eNane)
t heNanme( nane), theAddress(address),
t hel mage(0), theAudi od i p(0)

{
try { /1 this try block is new
if (imageFileName !'= "") {
t hel mage = new | mage(i mageFi | eNane) ;
}
if (audioCipFileName !="")
t heAudi ol i p = new Audi od i p(audi o i pFi | eNane) ;
}
}
catch (...) { /1 catch any exception
del et e thel mage; /'l perform necessary
del ete theAudi od i p; /'l cleanup actions
t hr ow, /| propagate the exception
}
}

Thereis no need to worry about Book Ent r y's non-pointer data members. Data members are automatically initialized before aclass's
constructor is called, so if aBookEnt ry constructor body begins executing, the object'st heNane, t heAddr ess, and

t hePhones data members have already been fully constructed. As fully constructed objects, these data members will be
automatically destroyed when the Book Ent r y object containing them is, and there is no need for you to intervene. Of course, if these
objects constructors call functions that might throw exceptions, those constructors have to worry about catching the exceptions and
performing any necessary cleanup before allowing them to propagate.

Y ou may have noticed that the statementsin BookEnt r y'scat ch block are amost the same asthosein BookEnt r y's destructor.
Code duplication here is no more tolerable than it is anywhere el se, so the best way to structure thingsis to move the common code
into a private helper function and have both the constructor and the destructor call it:

cl ass BookEntry {

public:
/'l as before
private:
v0| d cl eanup(); /1 common cl eanup statenents
¥
voi d BookEntry: : cl eanup()
{

del ete thel mage;
del et e t heAudi od i p;

}
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BookEnt ry: : BookEnt ry( const

string& nane,

const string& address,
const string& i mageFi | eNane,
const string& audi od i pFil eNane)
t heNane( nane), theAddress(address),
t hel mage(0), theAudi oC i p(0)
{
try {
/1 as before
}
catch (...) {
cl eanup(); /'l rel ease resources
t hr ow, /| propagate exception
}
}

BookEnt ry: : ~BookEnt ry()

cl eanup();

Thisisnice, but it doesn't put the topic to rest. Let us suppose we desigh our BookEnt r y class dightly differently so that t hel mage
andt heAudi oCl i p are constant pointers:
cl ass BookEntry {
public:
c. /1l as above
private:

iﬁﬁge * const thel nage;
Audi oCli p * const theAudi od i p;
3

Such pointers must be initialized via the member initialization lists of Book Ent r y's constructors, because there is no other way to
giveconst pointersavalue (see ltem E12). A common temptation isto initialize t hel mage andt heAudi od i p likethis,

/1 an inplenentation that may | eak resources if an
/1 exception is thrown
BookEnt ry: : BookEnt ry( const

/!l pointers are now
/] const

string& nane,

const string& address,
const string& i mageFi | eNane,
const string& audi od i pFil eNane)

t heNane( nane), theAddress(address),
t hel mage(i mageFi |l eNane = ""
? new | nmage(i mageFi | eNane)
0,
t heAudi ol i p(audi od i pFil eName = ""
? new Audi od i p(audi od i pFi | eNane)
{}

but this leads to the problem we originally wanted to eliminate: if an exception is thrown during initialization of t heAudi oC i p, the
object pointed to by t hel mage is never destroyed. Furthermore, we can't solve the problem by addingt r y and cat ch blocks to the
constructor, becauset ry and cat ch are statements, and member initialization lists allow only expressions. (That's why we had to
usethe?: syntax instead of thei f -t hen-el se syntax in theinitialization of t hel mage andt heAudi ol i p.)

Nevertheless, the only way to perform cleanup chores before exceptions propagate out of a constructor isto catch those exceptions, so
if wecan't putt ry and cat ch in amember initialization list, we'll have to put them somewhere else. One possibility isinside private
member functions that return pointers with whicht hel mage andt heAudi oC i p should beinitialized:

cl ass BookEntry {
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public:
/'l as above

private:
/] data nenbers as above

I mage * initlmge(const string& i mageFil eNane);
AudioCip * initAudioCip(const string&
audi od i pFi | eNane) ;
3

BookEntry: : BookEntry(const string& nane,
const string& address,
const string& i mgeFi |l eNane,
const string& audi od i pFil eNane)
t heNane( nane), theAddress(address),
t hel mage(i ni tl mage(i mageFi | eNane) ),
t heAudi od i p(ini t Audi od i p(audi od i pFi | eNane))
{}

/1 thelmage is initialized first, so there is no need to
/!l worry about a resource leak if this initialization
/1 fails. This function therefore handl es no exceptions
I mage * BookEntry::initlmage(const string& i mageFi | eNane)
{
if (imageFileNanme !'="") return new | mage(i mageFi | eNane);
el se return O;

}

/!l theAudioCip is initialized second, so it nust make
/'l sure thelmge's resources are released if an exception
/1 is thrown during initialization of theAudioCip. That's
/1 why this function uses try...catch.
Audi ol ip * BookEntry::initAudi ol ip(const string&

audi od i pFi | eNane)
{

try {
i f (audioCipFileNanme !="")

return new Audi ol i p(audi ol i pFi | eNane) ;
}

el se return O;
}
catch (...) {
del ete thel mage;
t hr ow;
}
}

Thisis perfectly kosher, and it even solves the problem we've been laboring to overcome. The drawback is that code that conceptually
belongs in a constructor is now dispersed across several functions, and that's a mai ntenance headache.

A better solution isto adopt the advice of Item 9 and treat the objects pointed to by t hel mage andt heAudi oCl i p asresourcesto

be managed by local objects. This solution takes advantage of the facts that both t hel mage andt heAudi oCl i p are pointersto
dynamically allocated objects and that those objects should be deleted when the pointers themselves go away. Thisis precisely the set
of conditionsfor which theaut o_pt r classes (see Item 9) were designed. We can therefore change the raw pointer types of

t hel mage andt heAudi oCl i p totheir aut o_pt r equivalents:

cl ass BookEntry {
public:
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/1l as above
private:

const auto_ptr<Ilnmage> thel nage; /'l these are now
const auto_ptr<Audi oClip> theAudioCip; // auto_ptr objects

H

Doing this makes Book Ent r y's constructor leak-safe in the presence of exceptions, and it letsus initializet hel nage and
t heAudi od i p using the member initiaization list:

BookEntry: : BookEntry(const string& nane,
const string& address,
const string& i mageFi |l eNane,
const string& audi od i pFil eNane)
t heNanme( nane), theAddress(address),
t hel mage(i mageFil eNane !'= ""
? new | nmage(i mageFi | eNane)
0,
t heAudi od i p(audi od i pFil eName = ""
? new Audi od i p(audi od i pFi | eNane)
{}

Inthisdesign, if an exception isthrown during initialization of t heAudi od i p, t hel nage isaready afully constructed object, so
it will automatically be destroyed, just liket heNane, t heAddr ess, andt hePhones. Furthermore, becauset hel nage and

t heAudi od i p are now objects, they'll be destroyed automatically when the Book Ent r y object containing them is. Hence there's
no need to manually delete what they point to. That simplifies Book Ent r y's destructor considerably:

BookEntry: : ~BookEnt ry()
0 /1 nothing to do!

This means you could eliminate Book Ent r y's destructor entirely.

It all adds up to this: if you replace pointer class members with their corresponding aut o_pt r objects, you fortify your constructors
against resource leaks in the presence of exceptions, you eliminate the need to manually deallocate resources in destructors, and you
allow const member pointers to be handled in the same graceful fashion as non-const pointers.

Dealing with the possibility of exceptions during construction can be tricky, but aut o_pt r (and aut o_pt r -like classes) can
eliminate most of the drudgery. Their use leaves behind code that's not only easy to understand, it's robust in the face of exceptions,
too.
Back to Item 10: Prevent resource leaks in constructors
Continue to Item 12: Understand how throwing an exception differs from passing a parameter or calling avirtua function

Item 11: Prevent exceptions from leaving destructors.

There are two situations in which a destructor is called. Thefirst is when an object is destroyed under "normal” conditions, e.g., when
it goes out of scope or isexplicitly del et ed. The second iswhen an object is destroyed by the exception-handling mechanism during
the stack-unwinding part of exception propagation.

That being the case, an exception may or may not be active when a destructor isinvoked. Regrettably, there is no way to distinguish
between these conditions from inside a destructor.4 As a result, you must write your destructors under the conservative assumption
that an exception is active, because if control leaves a destructor due to an exception while another exception is active, C++ callsthe
t er m nat e function. That function does just what its name suggests: it terminates execution of your program. Furthermore, it
terminates it immediately; not even local objects are destroyed.

Asan example, consider aSessi on class for monitoring on-line computer sessions, i.e., things that happen from the time you log in
through the time you log out. Each Sessi on abject notes the date and time of its creation and destruction:

cl ass Session {

public:
Session();
~Session();
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private:
static void | ogCreation(Session *obj Addr);
static void | ogDestruction(Session *obj Addr);

b

Thefunctions| ogCr eat i on and| ogDest ruct i on are used to record object creations and destructions, respectively. We might
therefore expect that we could code Sessi on's destructor like this:

Sessi on: : ~Sessi on()

{
}

Thislooksfine, but consider what would happen if | ogDest r uct i on throws an exception. The exception would not be caught in
Sessi on'sdestructor, so it would be propagated to the caller of that destructor. But if the destructor was itself being called because
some other exception had been thrown, thet er m nat e function would automatically be invoked, and that would stop your program
dead in its tracks.

| ogDestruction(this);

In many cases, thisis not what you'll want to have happen. It may be unfortunate that the Sessi on object's destruction can't be
logged, it might even be amajor inconvenience, but isit really so horrific a prospect that the program can't continue running? If not,
you'll have to prevent the exception thrown by | ogDest r uct i on from propagating out of Sessi on's destructor. The only way to
dothatisby usingt ry and cat ch blocks. A naive attempt might look like this,

Sessi on: : ~Sessi on()

{

try {
| ogDestruction(this);

}
catch (...) {
cerr << "Unable to | og destruction of Session object "

<< "at address "
<< this
<< ".\n";

}

}

but thisis probably no safer than our original code. If one of the callsto oper at or << inthe cat ch block resultsin an exception
being thrown, we're back where we started, with an exception leaving the Sessi on destructor.

We could always put at r y block insidethe cat ch block, but that seems a bit extreme. Instead, we'll just forget about logging
Sessi on destructionsif | ogDest r uct i on throws an exception:

Sessi on: : ~Sessi on()

{
try {
| ogDestruction(this);
}
catch (...) { }
}

The cat ch block appears to do nothing, but appearances can be deceiving. That block prevents exceptions thrown from
| ogDest r uct i on from propagating beyond Sessi on's destructor. That's all it needs to do. We can now rest easy knowing that if
aSessi on object is destroyed as part of stack unwinding, t er mi nat e will not be called.

There is a second reason why it's bad practice to allow exceptions to propagate out of destructors. If an exception isthrown from a
destructor and is not caught there, that destructor won't run to completion. (It will stop at the point where the exception is thrown.) If
the destructor doesn't run to completion, it won't do everything it's supposed to do. For example, consider a modified version of the
Sessi on class where the creation of a session starts a database transaction and the termination of a session ends that transaction:

Sessi on: : Sessi on() /1l to keep things sinple,
{ /! this ctor handl es no
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/] exceptions
| ogCreation(this);

start Transaction(); /1 start DB transaction
}
Sessi on: : ~Sessi on()
{
| ogDestruction(this);
endTransaction(); /! end DB transaction
}

Here, if | ogDest r uct i on throws an exception, the transaction started in the Sessi on constructor will never be ended. In this
case, we might be able to reorder the function callsin Sessi on's destructor to eliminate the problem, but if endTr ansact i on
might throw an exception, we've no choice but toreverttot ry and cat ch blocks.

We thus find ourselves with two good reasons for keeping exceptions from propagating out of destructors. First, it prevents

t er m nat e from being called during the stack-unwinding part of exception propagation. Second, it helps ensure that destructors
always accomplish everything they are supposed to accomplish. Each argument is convincing in its own right, but together, the caseis
ironclad. (If you're till not convinced, turn to Herb Sutter's article; in particular, to the section entitled, "Destructors That Throw and
Why They're Evil.)

Back to Item 11: Prevent exceptions from |leaving destructors
Continue to Item 13: Catch exceptions by reference

Item 12: Understand how throwing an exception differs from passing a parameter or calling avirtual function.

The syntax for declaring function parameters is almost the same as that for cat ch clauses:

class Wdget { ... }; /1l some class; it makes no
/1l difference what it is

void f1(Wdget w); /1 all these functions
void f2(Wdgeté& w; /1 take paraneters of

voi d f3(const Wdgeté& w; /1l type Wdget, Wdgetg&, or
void f4(Wdget *pw); /1 Wdget*

void f5(const Wdget *pw);

catch (Wdget w) ... /1 all these catch clauses
catch (Wdget & w) /1 catch exceptions of
catch (const Wdget& w) ... /1l type Wdget, Wdgeté&, or
catch (Wdget *pw) ... /1 Wdget*

catch (const Wdget *pw)

Y ou might therefore assume that passing an exception from at hr owsiteto acat ch clause isbasically the same as passing an
argument from afunction call site to the function's parameter. There are some similarities, to be sure, but there are significant
differences, too.

Let us begin with asimilarity. Y ou can pass both function parameters and exceptions by value, by reference, or by pointer. What
happens when you pass parameters and exceptions, however, is quite different. This difference grows out of the fact that when you
call afunction, control eventually returnsto the call site (unless the function fails to return), but when you throw an exception, control
does not return to the t hr ow site.

Consider afunction that both passesa W dget as aparameter and throwsaW dget as an exception:

/1 function to read the value of a Wdget froma stream
i stream operator>>(istream& s, Wdget& w);

voi d passAndThr owW dget ()

{
W dget | ocal Wdget;
cin >> | ocal Wdget; /'l pass | ocal Wdget to operator>>
t hrow | ocal W dget ; /1 throw | ocal Wdget as an exception
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}

When| ocal W dget ispassedto oper at or >>, no copying is performed. Instead, the reference winside oper at or >> isbound
tol ocal W dget , and anything doneto wisrealy doneto| ocal W dget . It'sadifferent story when| ocal W dget isthrown as
an exception. Regardless of whether the exception is caught by value or by reference (it can't be caught by pointer — that would be a
type mismatch), acopy of | ocal W dget will be made, and it is the copy that is passed to the cat ch clause. This must be the case,
because | ocal W dget will go out of scope once control leaves passAndThr owW dget , and when| ocal W dget goes out of
scope, its destructor will be called. If | ocal W dget itself were passed to acat ch clause, the clause would receive a destructed

W dget , an ex-W dget , aformer W dget , the carcass of what once was but is no longer aW dget . That would not be useful, and
that's why C++ specifies that an object thrown as an exception is always copied.

This copying occurs even if the object being thrown is not in danger of being destroyed. For example, if passAndThr owW dget
declares| ocal W dget to be static,

voi d passAndThr owW dget ()

{
static Wdget | ocal Wdget; /1l this is now static; it
[l will exist until the
/'l end of the program
cin >> | ocal Wdget; /'l this works as before
t hrow | ocal W dget ; /1 a copy of |ocal Wdget is
} /1 still made and thrown

acopy of | ocal W dget would still be made when the exception was thrown. This means that even if the exception is caught by
reference, it is not possible for the cat ch block to modify | ocal W dget ; it can only modify a copy of | ocal W dget . This
mandatory copying of exception objects helps explain another difference between parameter passing and throwing an exception: the
latter istypically much slower than the former (see Item 15).

When an object is copied for use as an exception, the copying is performed by the object's copy constructor. This copy constructor is
the one in the class corresponding to the object's static type, not its dynamic type. For example, consider this dlightly modified version
of passAndThr owW dget :

class Wdget { ... };

cl ass Speci al Wdget: public Wdget { ... };

voi d passAndThr owW dget ()

{
Speci al Wdget | ocal Speci al W dget ;
W dget & rw = | ocal Speci al W dget ; [l rwrefers to a
/1l Speci al W dget
throw rw /1 this throws an
/| exception of type
} /1 Wdget!

Here aW dget exception isthrown, even though r wrefersto a Speci al W dget . That's because r ws static typeis W dget , not
Speci al W dget . That r wactually refersto aSpeci al W dget isof no concern to your compilers; all they care about isr ws

static type. This behavior may not be what you want, but it's consistent with all other casesin which C++ copies objects. Copying is
always based on an object's static type (but see Item 25 for a technique that lets you make copies on the basis of an object's dynamic

type).

The fact that exceptions are copies of other objects has an impact on how you propagate exceptions from acat ch block. Consider
these two cat ch blocks, which at first glance appear to do the same thing:

catch (Wdget & w)
{

/| catch Wdget exceptions

/1 handl e the exception
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t hr ow /'l rethrow the exception so it
} /'l continues to propagate
catch (Wdget & w) /'l catch Wdget exceptions
{
/1 handl e the exception
t hrow w; /'l propagate a copy of the
} /'l caught exception

The only difference between these blocks is that the first one rethrows the current exception, while the second one throws a new copy
of the current exception. Setting aside the performance cost of the additional copy operation, is there a difference between these
approaches?

Thereis. Thefirst block rethrows the current exception, regardiess of its type. In particular, if the exception originally thrown was of
type Speci al W dget , thefirst block would propagate a Speci al W dget exception, even though ws static typeis W dget . This
is because no copy is made when the exception is rethrown. The second cat ch block throws a new exception, which will always be
of type W dget , because that's ws static type. In general, you'll want to use the

t hr ow,

syntax to rethrow the current exception, because there's no chance that that will change the type of the exception being propagated.
Furthermore, it's more efficient, because there's no need to generate a new exception object.

(Incidentally, the copy made for an exception is atemporary object. As Item 19 explains, this gives compilers the right to optimize it
out of existence. | wouldn't expect your compilers to work that hard, however. Exceptions are supposed to be rare, so it makeslittle
sense for compiler vendorsto pour alot of energy into their optimization.)

Let us examine the three kinds of cat ch clausesthat could catch the W dget exception thrown by passAndThr owW dget . They
are:

catch (Wdget w) ... /'l catch exception by val ue

catch (Wdget& w) ... /'l catch exception by
/'l reference

catch (const Wdget& w) ... /'l catch exception by
/'l reference-to-const

Right away we notice another difference between parameter passing and exception propagation. A thrown object (which, as explained
above, is aways atemporary) may be caught by simple reference; it need not be caught by reference-to-const . Passing atemporary
object to anon-const reference parameter is not allowed for function calls (see Item 19), but it is for exceptions.

Let us overlook this difference, however, and return to our examination of copying exception objects. We know that when we pass a
function argument by value, we make a copy of the passed object (see Item E22), and we store that copy in a function parameter. The

same thing happens when we pass an exception by value. Thus, when we declareacat ch clause like this,
catch (Wdget w) ... /1l catch by val ue
we expect to pay for the creation of two copies of the thrown object, one to create the temporary that all exceptions generate, the

second to copy that temporary into w. Similarly, when we catch an exception by reference,

catch (Wdget& w) ... /'l catch by reference

catch (const Wdget& w) ... /1l also catch by reference

we still expect to pay for the creation of a copy of the exception: the copy that is the temporary. In contrast, when we pass function
parameters by reference, no copying takes place. When throwing an exception, then, we expect to construct (and later destruct) one
more copy of the thrown object than if we passed the same object to a function.
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We have not yet discussed throwing exceptions by pointer, but throw by pointer is equivalent to pass by pointer. Either way, a copy of
the pointer is passed. About al you need to remember is not to throw a pointer to alocal object, because that local object will be
destroyed when the exception leaves the local object's scope. The cat ch clause would then be initialized with a pointer to an object
that had already been destroyed. Thisis the behavior the mandatory copying rule is designed to avoid.

The way in which objects are moved from call or t hr ow sitesto parameters or cat ch clausesis one way in which argument passing
differs from exception propagation. A second difference liesin what constitutes a type match between caller or thrower and callee or
catcher. Consider thesqrt function from the standard math library:

doubl e sqgrt (doubl e); /!l from <cmat h> or <math. h>
We can determine the square root of an integer like this:

int i;

double sqrtCOfi = sqrt(i);

Thereis nothing surprising here. The language allows implicit conversion fromi nt todoubl e, sointhecall tosqrt,i isslently
converted toadoubl e, and theresult of sqrt correspondsto that doubl e. (Seeltem 5 for afuller discussion of implicit type

conversions.) In general, such conversions are not applied when matching exceptionsto cat ch clauses. In this code,
void f(int value)

{
try {
if (someFunction()) { /1 if someFunction() returns
t hr ow val ue; /1 true, throw an int
}
catch (double d) { /1 handl e exceptions of
/! type double here
}
}

thei nt exception throwninsidethet r y block will never be caught by the cat ch clause that takesadoubl e. That clause catches
only exceptions that are exactly of type doubl e; no type conversions are applied. Asaresult, if thei nt exception isto be caught, it
will have to be by some other (dynamically enclosing) cat ch clausetaking ani nt or ani nt & (possibly modified by const or
vol atile).

Two kinds of conversions are applied when matching exceptionsto cat ch clauses. The first isinheritance-based conversions. A
cat ch clause for base class exceptionsis alowed to handle exceptions of derived class types, too. For example, consider the
diagnostics portion of the hierarchy of exceptions defined by the standard C++ library (see Item E49):
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runtime_error

logic_error

domain_error length_error range_error overflow_error
out_of range underflow_error

invalid_argument
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logic_error

domain_error length_error

invalid_argument

exception

runtime_error
range_error overflow_error

logic_error

domain_error

length_error

invalid_argument

runtime_error

range_error overflow error

A cat ch clausefor runt i me_er r or s can catch exceptions of typer ange_error andoverfl ow _error,too,andacat ch
clause accepting an abject of theroot classexcept i on can catch any kind of exception derived from this hierarchy.

This inheritance-based exception-conversion rule applies to values, references, and pointersin the usual fashion:

catch (runtinme_error)
catch (runtime_error&)
catch (const runtinme_error&)

catch (runtine_error?*)
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catch (const

runtine_error*) ... 11
/11

runtime_error*,
range_error*, or

/1 overflow error*

The second type of allowed conversion is from atyped to an untyped pointer, so acat ch clausetakingaconst voi d* pointer will

catch an exception of any pointer type:

catch (const voi d*)

/| catches any exception

/1 that's a pointer

The fina difference between passing a parameter and propagating an exception isthat cat ch clauses are alwaystried in the order of
their appearance. Hence, it is possible for an exception of a derived classtype to be handled by acat ch clause for one of its base
classtypes— even when acat ch clause for the derived classis associated with the samet r y block! For example,

try {
}
catch (logic_erroré& ex) { /1
/1
} /1
/1
catch (invalid _argunent& ex) { /1
/1
} /1
/1
/1

this block will catch
all logic error
exceptions, even those
of derived types
this block can never be
execut ed, because all

i nval i d_ar gunent
exceptions wi |l be caught
by the cl ause above

Contrast this behavior with what happens when you call avirtual function. When you call avirtual function, the function invoked is
the one in the class closest to the dynamic type of the object invoking the function. Y ou might say that virtual functions employ a"best
fit" agorithm, while exception handling follows a"first fit" strategy. Compilers may warn you if acat ch clause for aderived class
comes after one for a base class (some issue an error, because such code used to beillegal in C++), but your best course of actionis
preemptive: never put acat ch clause for a base class before acat ch clause for aderived class. The code above, for example,
should be reordered like this:

try {

}

catch (invalid_argunment& ex) { /1 handl e invalid_argunent
/] exceptions here

catch (logic_error& ex) { /1 handle all other
/1 logic_errors here

}

There are thus three primary ways in which passing an object to afunction or using that object to invoke a virtual function differs from
throwing the object as an exception. First, exception objects are aways copied; when caught by value, they are copied twice. Objects
passed to function parameters need not be copied at all. Second, objects thrown as exceptions are subject to fewer forms of type
conversion than are objects passed to functions. Finally, cat ch clauses are examined in the order in which they appear in the source
code, and the first one that can succeed is selected for execution. When an object is used to invoke a virtual function, the function
selected is the one that provides the best match for the type of the object, even if it's not the first one listed in the source code.

Back to Item 12: Understand how throwing an exception differs from passing a parameter or calling avirtual function

Continue to Item 14: Use exception specifications judiciously

Item 13: Catch exceptions by reference.

When you writeacat ch clause, you must specify how exception objects are to be passed to that clause. Y ou have three choices, just
as when specifying how parameters should be passed to functions: by pointer, by value, or by reference.

Let us consider first catch by pointer. In theory, this should be the least inefficient way to implement the invariably slow process of
moving an exception fromt hr owsiteto cat ch clause (see Item 15). That's because throw by pointer is the only way of moving

exception information without copying an object (see ltem 12). For example:
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cl ass exception { ... }; I
/1
I
voi d someFunction()
{
static exception ex; [/
t hr ow &ex; /1
}
voi d doSonet hi ng()
{
try {
soneFunction(); /1
}
catch (exception *ex) { /1
11
}
}

fromthe standard C++
library exception
hi erarchy (see ltem 12)

excepti on obj ect

throw a pointer to ex

may throw an excepti on*

catches the exception*;
no object is copied

Thislooks neat and tidy, but it's not quite as well-kept as it appears. For this to work, programmers must define exception objectsin a
way that guarantees the objects exist after control |eaves the functions throwing pointers to them. Global and static objects work fine,
but it's easy for programmersto forget the constraint. If they do, they typically end up writing code like this:

voi d someFunction()
{
exception ex; /1
[/
/1
[/

t hrow &ex; [/
[/
} /1

| ocal exception object;
will be destroyed when
this function's scope is
exited

throw a pointer to an
obj ect that's about to
be destroyed

Thisisworse than useless, because the cat ch clause handling this exception receives a pointer to an object that no longer exists.

An aternative is to throw a pointer to a new heap aobject:
voi d someFuncti on()

{
t hrow new excepti on; [/
/1
} /1
/1
/1

throw a pointer to a new heap-
based object (and hope that
operator new —see [tem8 —
doesn't itself throw an
exception!)

This avoids the |-just-caught-a-pointer-to-a-destroyed-object problem, but now authors of cat ch clauses confront a nasty question:
should they delete the pointer they receive? If the exception object was allocated on the heap, they must, otherwise they suffer a
resource leak. If the exception object wasn't allocated on the heap, they mustn't, otherwise they suffer undefined program behavior.

What to do?
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It'simpossible to know. Some clients might pass the address of a global or static object, others might pass the address of an exception
on the heap. Catch by pointer thus gives rise to the Hamlet conundrum: to delete or not to delete? It's a question with no good answer.
You're best off ducking it.

Furthermore, catch-by-pointer runs contrary to the convention established by the language itself. The four standard exceptions —
bad_al | oc (thrownwhen oper at or new (see Item 8) can't satisfy a memory request), bad_cast (thrownwhen a

dynami c_cast toareferencefails, seeltem 2), bad_t ypei d (thrown when dynam c_cast isapplied to anull pointer), and
bad_excepti on (available for unexpected exceptions; see Item 14) — are all objects, not pointers to objects, so you have to catch
them by value or by reference, anyway.

Catch-by-value eliminates questions about exception deletion and works with the standard exception types. However, it requires that
exception objects be copied twice each time they're thrown (see Item 12). It aso givesrise to the specter of the slicing problem,
whereby derived class exception objects caught as base class exceptions have their derivedness "sliced off." Such "dliced" objectsare
base class objects: they lack derived class data members, and when virtual functions are called on them, they resolve to virtual
functions of the base class. (Exactly the same thing happens when an object is passed to a function by value — see Item E22.) For
example, consider an application employing an exception class hierarchy that extends the standard one:

cl ass exception { /'l as above, this is a
public: /'l standard exception class

virtual const char * what() throw);
/1 returns a brief descrinp.
/'l of the exception (see
/1 Item 14 for info about
}; /1l the "throw()" at the
/1 end of the declaration)

class runtine_error: /1 also fromthe standard
public exception { ... }; /| C++ exception hierarchy

class Validation_ error: /1 this is a class added by
public runtine_error { /1 a client

public:

virtual const char * what() throw);
[/ this is a redefinition
// of the function declared

H /'l in class exception above
voi d someFunction() /1 may throw a validation
{ /'l exception

if (avalidation test fails) {
throw Validation_error();

}
}
voi d doSonet hi ng()
{
try {
someFunction(); /1 may throw a validation
} /'l exception
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catch (exception ex) { /1l catches all exceptions
/1 in or derived from
/1l the standard hierarchy

cerr << ex.what(); /1 calls exception::what(),
/'l never
} /1 Validation_error::what()

}

The version of what that is called isthat of the base class, even though the thrown exception is of type Val i dati on_err or and
Val i dati on_error redefinesthat virtual function. Thiskind of slicing behavior is amost never what you want.

That leaves only catch-by-reference. Catch-by-reference suffers from none of the problems we have discussed. Unlike
catch-by-pointer, the question of object deletion failsto arise, and there is no difficulty in catching the standard exception types.
Unlike catch-by-value, thereis no dlicing problem, and exception objects are copied only once.

If we rewrite the last example using catch-by-reference, it looks like this:

voi d someFunction() /! nothing changes in this
{ /1 function

if (a validation test fails) {
throw Validation_error();

}
}
voi d doSonet hi ng()
{
try {
someFunction(); /1 no change here
}
catch (exception& ex) { /1l here we catch by reference
/1 instead of by val ue
cerr << ex.what(); /1l now calls
/1 Validation_error::what(),
/1 not exception::what()
}
}

Thereis no change at thet hr ow site, and the only changein the cat ch clause is the addition of an ampersand. Thistiny
modification makes a big difference, however, because virtual functionsin the cat ch block now work as we expect: functionsin
Val i dati on_error areinvoked if they redefinethosein except i on.

What a happy confluence of events! If you catch by reference, you sidestep questions about object deletion that leave you damned if
you do and damned if you don't; you avoid slicing exception objects; you retain the ability to catch standard exceptions; and you limit
the number of times exception objects need to be copied. So what are you waiting for? Catch exceptions by reference!
Back to Item 13: Catch exceptions by reference
Continue to Item 15: Understand the costs of exception handling

Item 14: Use exception specifications judiciously.
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There's no denying it: exception specifications have appeal. They make code easier to understand, because they explicitly state what
exceptions a function may throw. But they're more than just fancy comments. Compilers are sometimes able to detect inconsi stent
exception specifications during compilation. Furthermore, if afunction throws an exception not listed in its exception specification,
that fault is detected at runtime, and the special function unexpect ed is automatically invoked. Both as a documentation aid and as
an enforcement mechanism for constraints on exception usage, then, exception specifications seem attractive.

Asis often the case, however, beauty is only skin deep. The default behavior for unexpect ed istocall t er ni nat e, and the
default behavior for t er m nat e isto call abor t , so the default behavior for a program with a violated exception specification is to
halt. Local variablesin active stack frames are not destroyed, because abor t shuts down program execution without performing such
cleanup. A violated exception specification is therefore a cataclysmic thing, something that should almost never happen.

Unfortunately, it's easy to write functions that make this terrible thing occur. Compilers only partially check exception usage for
consistency with exception specifications. What they do not check for — what the <language standard prohibits them from rejecting
(though they may issue awarning) — isacall to afunction that might violate the exception specification of the function making the
call.

Consider adeclaration for afunction f 1 that has no exception specification. Such afunction may throw any kind of exception:
extern void f1(); /1 mght throw anything

Now consider afunction f 2 that claims, through its exception specification, it will throw only exceptions of typei nt :
void f2() throw(int);

It isperfectly legal C++ for f 2 tocall f 1, eventhough f 1 might throw an exception that would violate f 2's exception specification:
void f2() throw(int)
{

fl() /'l legal even though f1 m ght throw
/'l somet hing besides an int

}

Thiskind of flexibility is essential if new code with exception specifications isto be integrated with older code lacking such
specifications.

Because your compilers are content to let you call functions whose exception specifications are inconsistent with those of the routine
containing the calls, and because such calls might result in your program's execution being terminated, it's important to write your
software in such away that these kinds of inconsistencies are minimized. A good way to start is to avoid putting exception
specifications on templates that take type arguments. Consider this template, which certainly looks asiif it couldn't throw any
exceptions:

/1 a poorly designed tenplate wt exception specifications
tenpl at e<cl ass T>
bool operator==(const T& | hs, const T& rhs) throw()

{
}

Thistemplate defines an oper at or == function for al types. For any pair of objects of the sametype, it returnst r ue if the objects
have the same address, otherwise it returnsf al se.

return & hs == &rhs;

This template contains an exception specification stating that the functions generated from the template will throw no exceptions. But
that's not necessarily true, because it's possible that oper at or & (the address-of operator — see Item E45) has been overloaded for
some types. If it has, oper at or & may throw an exception when called from inside oper at or ==. If it does, our exception
specification isviolated, and off to unexpect ed we go.

Thisis a specific example of amore general problem, namely, that there is no way to know anything about the exceptions thrown by a
template's type parameters. We can almost never provide a meaningful exception specification for atemplate, because templates
amost invariably use their type parameter in some way. The conclusion? Templates and exception specifications don't mix.

A second technigque you can use to avoid callsto unexpect ed isto omit exception specifications on functions making callsto
functions that themselves lack exception specifications. Thisis simple common sense, but there is one case that is easy to forget.
That's when allowing usersto register callback functions:

file://IC|/mauro/Mec/M.htm (52 of 218) [2001-01-17 10:54:26]


http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard
file:///C|/mauro/EC/E_FR.HTM#8160

More Effective C++ | Book

/1 Function pointer type for a wi ndow system cal | back
/1 when a wi ndow system event occurs
t ypedef void (*Call BackPtr) (int eventXLocati on,

int event YLocati on,

voi d *dat aToPassBack) ;

/1 W ndow system class for holding onto call back
/1 functions registered by wi ndow systemclients
class Cal |l Back {
public:
Cal | Back( Cal | BackPtr fPtr, void *dataToPassBack)
func(fPtr), data(dataToPassBack) {}

voi d makeCal | Back(i nt event XLocati on,
i nt event YLocation) const throw();

private:
Cal | BackPtr func; // function to call when
/1 callback is made
voi d *dat a; /1l data to pass to call back
}; // function

/1 To inmplenment the callback, we call the registered func-
/[l tion with event's coordi nates and the registered data
voi d Cal | Back: : makeCal | Back(i nt event XLocati on,
i nt event YLocation) const throw)
{

}

Herethecall tof unc inmakeCal | Back runsthe risk of aviolated exception specification, because thereis no way of knowing
what exceptionsf unc might throw.

func(event XLocati on, eventYLocation, data);

This problem can be eliminated by tightening the exception specification in the Cal | BackPt r typedef:2

typedef void (*Call BackPtr)(int event XLocati on,
int event YLocati on,
voi d *dat aToPassBack) throw();

Given thistypedef, it isnow an error to register acal | back function that fails to guarantee it throws nothing:

/1 a callback function w thout an exception specification
voi d cal | BackFcnl(int event XLocation, int eventYLocation,
voi d *dat aToPassBack) ;

voi d *cal | BackDat a;

Cal | Back cl(cal |l BackFcnl, call BackData);
/1 error! callBackFcnl
/1 mght throw an exception
/1 a callback function with an exception specification
voi d cal | BackFcn2(int event XLocati on,
i nt event YLocation,
voi d *dat aToPassBack) throw();

Cal | Back c2(cal |l BackFcn2, call BackDat a) ;
/1 okay, callBackFcn2 has a
/'l conform ng ex. spec.

This checking of exception specifications when passing function pointersis arelatively recent addition to the language, so don't be
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surprised if your compilers don't yet support it. If they don't, it's up to you to ensure you don't make this kind of mistake.

A third technique you can use to avoid callsto unexpect ed isto handle exceptions "the system" may throw. Of these exceptions,
the most commonisbad_al | oc, whichisthrown by oper at or newand oper at or new ] when amemory alocation fails (see
Item 8). If you use the new operator (again, see ltem 8) in any function, you must be prepared for the possibility that the function will

encounter abad_al | oc exception.

Now, an ounce of prevention may be better than a pound of cure, but sometimes prevention is hard and cureis easy. That is,
sometimes it's easier to cope with unexpected exceptions directly than to prevent them from arising in the first place. If, for example,
you're writing software that uses exception specifications rigorously, but you're forced to call functionsin libraries that don't use
exception specifications, it'simpractical to prevent unexpected exceptions from arising, because that would require changing the code
inthelibraries.

If preventing unexpected exceptionsisn't practical, you can exploit the fact that C++ allows you to replace unexpected exceptions with
exceptions of adifferent type. For example, suppose you'd like all unexpected exceptions to be replaced by
Unexpect edExcept i on objects. You can set it up like this,

cl ass Unexpect edException {}; /1 all unexpected exception
/! objects will be replaced
/1l by objects of this type

voi d convert Unexpect ed() /1 function to call if

{ /1 an unexpect ed exception
t hr ow Unexpect edExcepti on(); /1 is thrown

}

and make it happen by replacing the default unexpect ed function with conver t Unexpect ed:
set _unexpect ed(convert Unexpect ed);

Once you've done this, any unexpected exception resultsin conver t Unexpect ed being called. The unexpected exception isthen
replaced by a new exception of type Unexpect edExcept i on. Provided the exception specification that was violated includes
Unexpect edExcept i on, exception propagation will then continue as if the exception specification had always been satisfied. (If
the exception specification does not include Unexpect edExcept i on, t er ni nat e will be caled, just asif you had never
replaced unexpect ed.)

Another way to trangate unexpected exceptionsinto awell known typeisto rely on the fact that if the unexpect ed function's
replacement rethrows the current exception, that exception will be replaced by a new exception of the standard type
bad_except i on. Here's how you'd arrange for that to happen:

voi d convert Unexpect ed() /1 function to call if

{ /'l an unexpect ed exception
t hr ow, /1l is thrown; just rethrow

} /1l the current exception

set _unexpect ed(convert Unexpect ed);
/1l install convertUnexpected
/'l as the unexpected
/'l repl acenent

If you do thisand you include bad_except i on (or its base class, the standard classexcept i on) in al your exception
specifications, you'll never have to worry about your program halting if an unexpected exception is encountered. Instead, any wayward
exception will bereplaced by abad_except i on, and that exception will be propagated in the stead of the original one.

By now you understand that exception specifications can be alot of trouble. Compilers perform only partial checks for their consistent
usage, they're problematic in templates, they're easy to violate inadvertently, and, by default, they lead to abrupt program termination
when they're violated. Exception specifications have another drawback, too, and that's that they result in unexpect ed being invoked
even when a higher-level caller is prepared to cope with the exception that's arisen. For example, consider this code, which is taken
almost verbatim from [tem 11:
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cl ass Session { /1 for nodeling online
public: /] sessions

~Sessi on();
private:

static void | ogDestruction(Session *obj Addr) throw();
3
Sessi on: : ~Sessi on()
{

try {

| ogDestruction(this);

}

catch (...) { }
}

The Sessi on destructor calls| ogDest r uct i on to record the fact that a Sessi on object is being destroyed, but it explicitly
catches any exceptions that might be thrown by | ogDest r uct i on. However, | ogDest r uct i on comeswith an exception
specification asserting that it throws no exceptions. Now, suppose some function called by | ogDest r uct i on throws an exception
that | ogDest r uct i on failsto catch. Thisisn't supposed to happen, but as we've seen, it isn't difficult to write code that leads to the
violation of exception specifications. When this unanticipated exception propagates through | ogDest r uct i on, unexpect ed will
be called, and, by default, that will result in termination of the program. Thisis correct behavior, to be sure, but isit the behavior the
author of Sessi on's destructor wanted? That author took pains to handle all possible exceptions, so it seems almost unfair to halt the
program without giving Sessi on's destructor's cat ch block a chance to work. If | ogDest r uct i on had no exception
specification, this I'm-willing-to-catch-it-if-you'll-just-give-me-a-chance scenario would never arise. (One way to prevent it isto
replace unexpect ed as described above.)

It'simportant to keep a balanced view of exception specifications. They provide excellent documentation on the kinds of exceptions a
function is expected to throw, and for situations in which violating an exception specification is so dire as to justify immediate
program termination, they offer that behavior by default. At the same time, they are only partly checked by compilers and they are
easy to violate inadvertently. Furthermore, they can prevent high-level exception handlers from dealing with unexpected exceptions,
even when they know how to. That being the case, exception specifications are atool to be applied judiciously. Before adding them to
your functions, consider whether the behavior they impart to your software is really the behavior you want.

Back to Item 14: Use exception specifications judiciously.

Continue to Efficiency

Item 15: Understand the costs of exception handling.

To handle exceptions at runtime, programs must do afair amount of bookkeeping. At each point during execution, they must be able
to identify the objects that require destruction if an exception is thrown; they must make note of each entry to and exit fromat ry
block; and for each t r y block, they must keep track of the associated cat ch clauses and the types of exceptions those clauses can
handle. This bookkeeping is not free. Nor are the runtime comparisons necessary to ensure that exception specifications are satisfied.
Nor isthe work expended to destroy the appropriate objects and find the correct cat ch clause when an exception is thrown. No,
exception handling has costs, and you pay at |east some of them even if you never use the keywordst ry, t hr ow, or cat ch.

Let us begin with the things you pay for even if you never use any exception-handling features. Y ou pay for the space used by the data
structures needed to keep track of which objects are fully constructed (see Item 10), and you pay for the time needed to keep these data
structures up to date. These costs are typically quite modest. Nevertheless, programs compiled without support for exceptions are
typically both faster and smaller than their counterparts compiled with support for exceptions.

In theory, you don't have a choice about these costs. exceptions are part of C++, compilers have to support them, and that's that. Y ou
can't even expect compiler vendors to eliminate the costs if you use no exception-handling features, because programs are typically
composed of multiple independently generated object files, and just because one object file doesn't do anything with exceptions
doesn't mean others don't. Furthermore, even if none of the object files linked to form an executabl e use exceptions, what about the
libraries they're linked with? If any part of a program uses exceptions, the rest of the program must support them, too. Otherwise it
may not be possible to provide correct exception-handling behavior at runtime.

That's the theory. In practice, most vendors who support exception handling alow you to control whether support for exceptionsis
included in the code they generate. If you know that no part of your program usest ry, t hr ow, or cat ch, and you also know that no
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library with which you'll link usest ry, t hr ow, or cat ch, you might aswell compile without exception-handling support and save
yourself the size and speed penalty you'd otherwise probably be assessed for a feature you're not using. Astime goes on and libraries
employing exceptions become more common, this strategy will become less tenable, but given the current state of C++ software
development, compiling without support for exceptions is a reasonable performance optimization if you have already decided not to
use exceptions. It may also be an attractive optimization for libraries that eschew exceptions, provided they can guarantee that
exceptions thrown from client code never propagate into the library. Thisis adifficult guarantee to make, asit precludes client
redefinitions of library-declared virtual functions; it aso rules out client-defined callback functions.

A second cost of exception-handling arisesfromt r y blocks, and you pay it whenever you use one, i.e., whenever you decide you
want to be able to catch exceptions. Different compilersimplement t r y blocksin different ways, so the cost varies from compiler to
compiler. Asarough estimate, expect your overall code size to increase by 5-10% and your runtime to go up by asimilar amount if
you uset ry blocks. This assumes no exceptions are thrown; what we're discussing here is just the cost of having t r y blocksin your
programs. To minimize this cost, you should avoid unnecessary t r y blocks.

Compilerstend to generate code for exception specifications much asthey do for t r y blocks, so an exception specification generally
incurs about the same cost asat r y block. Excuse me? Y ou say you thought exception specifications were just specifications, you
didn't think they generated code? Well, now you have something new to think about.

Which brings us to the heart of the matter, the cost of throwing an exception. In truth, this shouldn't be much of a concern, because
exceptions should be rare. After all, they indicate the occurrence of eventsthat are exceptional. The 80-20 rule (see Item 16) tells us
that such events should almost never have much impact on a program's overall performance. Nevertheless, | know you're curious
about just how big a hit you'll take if you throw an exception, and the answer isit's probably a big one. Compared to a normal function
return, returning from a function by throwing an exception may be as much as three orders of magnitude slower. That's quite a hit. But
you'll take it only if you throw an exception, and that should be almost never. If, however, you've been thinking of using exceptionsto
indicate relatively common conditions like the completion of a data structure traversal or the termination of aloop, now would be an
excellent time to think again.

But wait. How can | know this stuff? If support for exceptionsis arelatively recent addition to most compilers (it is), and if different
compilersimplement their support in different ways (they do), how can | say that a program's size will generally grow by about
5-10%, its speed will decrease by a similar amount, and it may run orders of magnitude slower if lots of exceptions are thrown? The
answer isfrightening: alittle rumor and a handful of benchmarks (see Item 23). The fact is that most people — including most
compiler vendors — have little experience with exceptions, so though we know there are costs associated with them, it is difficult to
predict those costs accurately.

The prudent course of action isto be aware of the costs described in this item, but not to take the numbers very seriously. Whatever
the cost of exception handling, you don't want to pay any more than you have to. To minimize your exception-related costs, compile
without support for exceptions when that is feasible; limit your use of t r y blocks and exception specifications to those locations
where you honestly need them; and throw exceptions only under conditions that are truly exceptional. If you still have performance
problems, profile your software (see Item 16) to determine if exception support is a contributing factor. If it is, consider switching to
different compilers, ones that provide more efficient implementations of C++'s exception-handling features.

Back to Item 15: Understand the costs of exception handling.
Continue to Item 16: Remember the 80-20 rule

Efficiency

| harbor a suspicion that someone has performed secret -Pavlovian experiments on C++ software developers. How else can one explain
the fact that when the word "efficiency” is mentioned, scores of programmers start to drool ?

In fact, efficiency is no laughing matter. Programs that are too big or too slow fail to find acceptance, no matter how compelling their
merits. Thisis perhaps asit should be. Software is supposed to help us do things better, and it's difficult to argue that slower is better,
that demanding 32 megabytes of memory is better than requiring a mere 16, that chewing up 100 megabytes of disk space is better
than swallowing only 50. Furthermore, though some programs take longer and use more memory because they perform more
ambitious computations, too many programs can blame their sorry pace and bloated footprint on nothing more than bad design and
slipshod programming.

Writing efficient programs in C++ starts with the recognition that C++ may well have nothing to do with any performance problems
you've been having. If you want to write an efficient C++ program, you must first be able to write an efficient program. Too many
devel opers overlook this simple truth. Y es, loops may be unrolled by hand and multiplications may be replaced by shift operations, but
such micro-tuning leads nowhere if the higher-level algorithms you employ are inherently inefficient. Do you use quadratic algorithms
when linear ones are available? Do you compute the same value over and over? Do you squander opportunities to reduce the average
cost of expensive operations? If so, you can hardly be surprised if your programs are described like second-rate tourist attractions:
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worth alook, but only if you've got some extratime.

The material in this chapter attacks the topic of efficiency from two angles. The first is language-independent, focusing on things you
can do in any programming language. C++ provides a particularly appealing implementation medium for these ideas, because its
strong support for encapsulation makes it possible to replace inefficient class implementations with better algorithms and data
structures that support the same interface.

The second focusis on C++ itself. High-performance a gorithms and data structures are great, but sloppy implementation practices can
reduce their effectiveness considerably. The most insidious mistake is both simple to make and hard to recognize: creating and
destroying too many objects. Superfluous object constructions and destructions act like a hemorrhage on your program's performance,
with precious clock-ticks bleeding away each time an unnecessary object is created and destroyed. This problem is so pervasivein
C++ programs, | devote four separate items to describing where these objects come from and how you can eliminate them without
compromising the correctness of your code.

Programs don't get big and slow only by creating too many objects. Other potholes on the road to high performance include library
selection and implementations of language features. In the items that follow, | address these issues, too.

After reading the material in this chapter, you'll be familiar with several principles that can improve the performance of virtually any
program you write, you'll know exactly how to prevent unnecessary objects from creeping into your software, and you'll have a keener
awareness of how your compilers behave when generating executables.

It's been said that forewarned is forearmed. If so, think of the information that follows as preparation for battle.

Back to Efficiency
Continueto Item 17: Consider using lazy evaluation

Item 16: Remember the 80-20 rule.

The 80-20 rule states that 80 percent of a program's resources are used by about 20 percent of the code: 80 percent of the runtimeis
spent in approximately 20 percent of the code; 80 percent of the memory is used by some 20 percent of the code; 80 percent of the
disk accesses are performed for about 20 percent of the code; 80 percent of the maintenance effort is devoted to around 20 percent of
the code. The rule has been repeatedly verified through examinations of countless machines, operating systems, and applications. The
80-20 ruleis more than just a catchy phrase; it's a guideline about system performance that has both wide applicability and a solid
empirical basis.

When considering the 80-20 rule, it's important not to get too hung up on numbers. Some people favor the more stringent 90-10 rule,
and there's experimental evidence to back that, too. Whatever the precise numbers, the fundamental point is this: the overall
performance of your software is almost always determined by a small part of its constituent code.

As aprogrammer striving to maximize your software's performance, the 80-20 rule both simplifies and complicates your life. On one
hand, the 80-20 rule implies that most of the time you can produce code whose performance is, frankly, rather mediocre, because 80
percent of the time its efficiency doesn't affect the overall performance of the system you're working on. That may not do much for
your ego, but it should reduce your stress level alittle. On the other hand, the ruleimplies that if your software has a performance
problem, you've got a tough job ahead of you, because you not only have to locate the small pockets of code that are causing the
problem, you have to find ways to increase their performance dramatically. Of these tasks, the more troublesome is generally locating
the bottlenecks. There are two fundamentally different ways to approach the matter: the way most people do it and the right way.

The way most people locate bottlenecks is to guess. Using experience, intuition, tarot cards and Ouija boards, rumors or worse,
developer after developer solemnly proclaims that a program'’s efficiency problems can be traced to network delays, improperly tuned
memory allocators, compilers that don't optimize aggressively enough, or some bonehead manager's refusal to permit assembly
language for crucial inner loops. Such assessments are generally delivered with a condescending sneer, and usually both the sneerers
and their prognostications are flat-out wrong.

Most programmers have lousy intuition about the performance characteristics of their programs, because program performance
characteristics tend to be highly unintuitive. As aresult, untold effort is poured into improving the efficiency of parts of programs that
will never have a naoticeable effect on their overall behavior. For example, fancy algorithms and data structures that minimize
computation may be added to a program, but it's al for naught if the program is 1/0-bound. Souped-up 1/0 libraries (see [tem 23) may
be substituted for the ones shipped with compilers, but there's not much point if the programs using them are CPU-bound.

That being the case, what do you do if you're faced with aslow program or one that uses too much memory? The 80-20 rule means
that improving random parts of the program is unlikely to help very much. The fact that programs tend to have unintuitive
performance characteristics means that trying to guess the causes of performance bottlenecks is unlikely to be much better than just
improving random parts of your program. What, then, will work?
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What will work isto empirically identify the 20 percent of your program that is causing you heartache, and the way to identify that
horrid 20 percent isto use a program profiler. Not just any profiler will do, however. Y ou want one that directly measures the
resources you are interested in. For example, if your program is too slow, you want a profiler that tells you how much timeis being
spent in different parts of the program. That way you can focus on those places where a significant improvement in local efficiency
will also yield asignificant improvement in overall efficiency.

Profilersthat tell you how many times each statement is executed or how many times each function is called are of limited utility.
From a performance point of view, you do not care how many times a statement is executed or afunction is called. It is, after al,
rather rare to encounter a user of aprogram or aclient of alibrary who complains that too many statements are being executed or too
many functions are being called. If your software is fast enough, nobody cares how many statements are executed, and if it's too slow,
nobody cares how few. All they care about is that they hate to wait, and if your program is making them do it, they hate you, too.

Still, knowing how often statements are executed or functions are called can sometimes yield insight into what your software is doing.
If, for example, you think you're creating about a hundred objects of a particular type, it would certainly be worthwhile to discover that
you're calling constructorsin that class thousands of times. Furthermore, statement and function call counts can indirectly help you
understand facets of your software's behavior you can't directly measure. If you have no direct way of measuring dynamic memory
usage, for example, it may be helpful to know at |east how often memory allocation and deallocation functions (e.g., operators new,
new ], del et e,anddel et e[ ] — seeltem 8) are called.

Of course, even the best of profilersis hostage to the data it's given to process. If you profile your program while it's processing
unrepresentative input data, you're in no position to complain if the profiler leads you to fine-tune parts of your software — the parts
making up some 80 percent of it — that have no bearing on its usual performance. Remember that a profiler can only tell you how a
program behaved on a particular run (or set of runs), so if you profile a program using input data that is unrepresentative, you're going
to get back a profile that is equally unrepresentative. That, in turn, islikely to lead to you to optimize your software's behavior for
uncommon uses, and the overall impact on common uses may even be negative.

The best way to guard against these kinds of pathological resultsisto profile your software using as many data sets as possible.
Moreover, you must ensure that each data set is representative of how the software is used by its clients (or at least its most important
clients). It is usually easy to acquire representative data sets, because many clients are happy to let you use their data when profiling.
After all, you'll then be tuning your software to meet their needs, and that can only be good for both of you.
Back to Item 16: Remember the 80-20 rule
Continue to Item 18: Amortize the cost of expected computations

Item 17: Consider using lazy evaluation.

From the perspective of efficiency, the best computations are those you never perform at all. That's fine, but if you don't need to do
something, why would you put code in your program to do it in the first place? And if you do need to do something, how can you
possibly avoid executing the code that doesiit?

The key isto belazy.

Remember when you were a child and your parents told you to clean your room? If you were anything like me, you'd say "Okay," then
promptly go back to what you were doing. Y ou would not clean your room. In fact, cleaning your room would be the last thing on
your mind — until you heard your parents coming down the hall to confirm that your room had, in fact, been cleaned. Then you'd
sprint to your room and get to work as fast as you possibly could. If you were lucky, your parents would never check, and you'd avoid
al the work cleaning your room normally entails.

It turns out that the same delay tactics that work for afive year old work for a C++ programmer. In Computer Science, however, we
dignify such procrastination with the name lazy evaluation. When you employ lazy evaluation, you write your classesin such away
that they defer computations until the results of those computations are required. If the results are never required, the computations are
never performed, and neither your software's clients nor your parents are any the wiser.

Perhaps you're wondering exactly what I'm talking about. Perhaps an example would help. Well, lazy evaluation is applicablein an
enormous variety of application areas, so I'll describe four.

Reference Counting
Consider this code:
class String { ... }; /1l a string class (the standard

/1 string type nay be inpl enented
/] as described below, but it
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/1 doesn't have to be)

String sl "Hel | o";

String s2 = sli; /1 call String copy ctor

A common implementation for the St r i ng copy constructor would result in s1 and s2 each having its own copy of " Hel | 0" after
s2 isinitialized with s1. Such a copy constructor would incur arelatively large expense, because it would have to make a copy of
sl'svalueto giveto s2, and that would typically entail allocating heap memory viathe new operator (see Item 8) and calling

st r cpy to copy thedatain s1 into the memory allocated by s2. Thisis eager evaluation: making a copy of s1 and putting it into
s2 just because the St r i ng copy constructor was called. At this point, however, there has been no real need for s2 to have a copy of
the value, because s2 hasn't been used yet.

The lazy approach isalot lesswork. Instead of giving s2 acopy of s1'svalue, we haves2 shares1'svaue. All wehavetodoisa
little bookkeeping so we know who's sharing what, and in return we save the cost of a call to new and the expense of copying
anything. The fact that s1 and s2 are sharing a data structure is transparent to clients, and it certainly makes no differencein
statements like the following, because they only read values, they don't write them:

cout << sli; /! read sl's val ue

cout << sl + s2; // read sl's and s2's val ues

In fact, the only time the sharing of values makes a difference is when one or the other string is modified; then it's important that only
one string be changed, not both. In this statement,

s2. convert ToUpper Case() ;
it's crucia that only s2'svalue be changed, not s1's also.

To handle statements like this, we have to implement St r i ng'sconvert ToUpper Case function so that it makes acopy of s2's
value and makes that value private to s2 before modifying it. Inside conver t ToUpper Case, we can be lazy no longer: we have to
make a copy of s2's (shared) value for s2's private use. On the other hand, if s2 is hever modified, we never have to make a private
copy of itsvalue. It can continue to share avalue aslong asit exists. If we're lucky, s2 will never be modified, in which case welll
never have to expend the effort to give it its own value.

The details on making this kind of value sharing work (including all the code) are provided in Item 29, but the ideais lazy evaluation:

don't bother to make a copy of something until you really need one. Instead, be lazy — use someone else's copy aslong as you can get
away with it. In some application areas, you can often get away with it forever.

Distinguishing Reads from Writes
Pursuing the example of reference-counting strings a bit further, we come upon a second way in which lazy evaluation can help us.
Consider this code:

String s = "Homer's 1liad"; /1l Assume s is a
/1l reference-counted string

cout << s[3]; /1 call operator[] to read s[3]
s[3] = '"x'; /1 call operator[] to wite s[3]

Thefirst call tooper at or [ ] isto read part of astring, but the second call isto perform awrite. We'd like to be able to distinguish
the read call from the write, because reading a reference-counted string is cheap, but writing to such a string may require splitting off a
new copy of the string's value prior to the write.

This puts us in a difficult implementation position. To achieve what we want, we need to do different thingsinside oper at or [ ]
(depending on whether it's being called to perform aread or awrite). How can we determine whether oper at or [ ] has been called
in aread or awrite context? The brutal truth is that we can't. By using lazy evaluation and proxy classes as described in Item 30,

however, we can defer the decision on whether to take read actions or write actions until we can determine which is correct.
Lazy Fetching

As athird example of lazy evaluation, imagine you've got a program that uses large objects containing many constituent fields. Such
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objects must persist across program runs, so they're stored in a database. Each object has a unique object identifier that can be used to
retrieve the object from the database:

cl ass LargeObj ect { /'l large persistent objects
public:
LargeQbj ect (ObjectI D id); /'l restore object fromdisk
const string& fieldl() const; /1l value of field 1
int field2() const; /1 value of field 2
doubl e field3() const; ...

const string& field4() const;
const string& field5() const;

i
Now consider the cost of restoring aLar geCObj ect from disk:

voi d restoreAndProcessCbject (ObjectlID id)

{
Lar gehj ect object(id); /'l restore object

}

Because Lar geObj ect instances are big, getting all the data for such an object might be a costly database operation, especialy if the
data must be retrieved from a remote database and pushed across a network. In some cases, the cost of reading all that data would be
unnecessary. For example, consider this kind of application:

voi d restoreAndProcessChject (ObjectlID id)

{
Lar gehj ect object(id);
if (object.field2() == 0) {
cout << "Object " << id << ": null field2.\n";
}
}

Hereonly thevalue of f i el d2 isrequired, so any effort spent setting up the other fields is wasted.

The lazy approach to this problem isto read no data from disk when aLar geCbhj ect object is created. Instead, only the "shell" of an
object is created, and datais retrieved from the database only when that particular data is needed inside the object. Here's one way to
implement this kind of "demand-paged" object initialization:
cl ass LargeObject {
public:
LargeQbj ect (bjectID id);

const string& fieldl() const;
int field2() const;

doubl e field3() const;

const string& field4() const;

private:
bj ect 1 D oi d;
nmut abl e string *fiel dlval ue; /'l see below for a
mut abl e int *fiel d2Val ue; // discussion of "mutable"

nmut abl e doubl e *fi el d3Val ue;
nmut abl e string *fiel d4val ue;
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b

Largehj ect:: LargeCbj ect (ObjectID id)
oid(id), fieldlvalue(0), field2Vvalue(0), field3Vvalue(0),

{}
const string& LargeCbject::fieldl() const
{
if (fieldlvalue == 0) {
read the data for field 1 fromthe database and nake
fieldlvalue point to it;
}
return *fiel dlVal ue;
}

Each field in the object is represented as a pointer to the necessary data, and the Lar geCbj ect constructor initializes each pointer to
null. Such null pointers signify fields that have not yet been read from the database. Each Lar geCObj ect member function must
check the state of afield's pointer before accessing the data it pointsto. If the pointer is null, the corresponding data must be read from
the database before performing any operations on that data.

When implementing lazy fetching, you must confront the problem that null pointers may need to be initialized to point to real data
from inside any member function, including const member functionslikef i el d1. However, compilers get cranky when you try to
modify data membersinsideconst member functions, so you've got to find away to say, "It's okay, | know what I'm doing." The
best way to say that isto declare the pointer fields nut abl e, which means they can be modified inside any member function, even
inside const member functions (see Item E21). That'swhy the fieldsinside Lar geCbj ect above are declared nut abl e.

The nut abl e keyword is arelatively recent addition to C++, so it's possible your vendors don't yet support it. If not, you'll need to
find another way to convince your compilersto let you modify data membersinside const member functions. One workabl e strategy
isthe"faket hi s" approach, whereby you create a pointer-to-non-const that pointsto the same object ast hi s does. When you
want to modify a data member, you access it through the "faket hi s" pointer:

cl ass LargeObj ect {

public:
const string& fieldl() const; /'l unchanged
private:
string *fieldlval ue; /1 not decl ared nut abl e
/1 so that ol der
}; /1l compilers will accept it

const string& LargeCbject::fieldl() const

{
/! declare a pointer, fakeThis, that points where this
/1 does, but where the constness of the object has been
/| cast away
Largehj ect * const fakeThis =
const _cast <LargeObj ect* const>(this);
if (fieldlvalue == 0) {
fakeThi s->fi el dlVal ue = /1 this assignment is K
the appropriate data /'l because what fakeThis
fromthe database; /1 points to isn't const
}
return *fiel dlval ue;
}

file://IC|/mauro/Mec/M.htm (61 of 218) [2001-01-17 10:54:26]


file:///C|/mauro/EC/E_FR.HTM#6003

More Effective C++ | Book

Thisfunction employsaconst _cast (seeltem 2) to cast away theconst nessof *t hi s. If your compilers don't support
const _cast, you can use an old C-style cast:

/1 Use of old-style cast to help emrmulate nutable
const string& LargeCbject::fieldl() const

{
Largehj ect * const fakeThis = (LargeObject* const)this;

/] as above

}

Look again at the pointersinside Lar geChj ect . Let'sfaceit, it'stedious and error-prone to have to initialize al those pointersto
null, then test each one before use. Fortunately, such drudgery can be automated through the use of smart pointers, which you can read
about in Item 28. If you use smart pointersinside Lar geObj ect , you'll also find you no longer need to declare the pointers

nmut abl e. Alas, it'sonly atemporary respite, because you'll wind up needing mut abl e once you sit down to implement the smart
pointer classes. Think of it as conservation of inconvenience.

Lazy Expression Evaluation

A final example of lazy evaluation comes from numerical applications. Consider this code:
t enpl at e<cl ass T>

class Matrix { ... }; /1 for honbgeneous natrices
Mat ri x<i nt > ml( 1000, 1000); /1 a 1000 by 1000 matrix
Mat ri x<i nt > n2(1000, 1000); [/l ditto

Matrix<int> n8 = ml + nP; // add ml and n?

The usual implementation of oper at or + would use eager evaluation; in this case it would compute and return the sum of il and
nR. That's afair amount of computation (1,000,000 additions), and of course there's the cost of allocating the memory to hold all those
values, too.

The lazy evaluation strategy says that's way too much work, so it doesn't do it. Instead, it sets up adata structure inside n that
indicates that n8's value is the sum of mL and n2. Such a data structure might consist of nothing more than a pointer to each of mL. and
n2, plus an enum indicating that the operation on them is addition. Clearly, it's going to be faster to set up this data structure than to
add ml and n2, and it's going to use alot less memory, too.

Suppose that later in the program, before nB has been used, this code is executed:
Mat ri x<i nt> n4(1000, 1000);
/1l give mt sone val ues
ng = m * ni;

Now we can forget all about n8 being the sum of mlL and n2 (and thereby save the cost of the computation), and in its place we can
start remembering that N8 isthe product of M4 and L. Needless to say, we don't perform the multiplication. Why bother? We're lazy,
remember?

This example looks contrived, because no good programmer would write a program that computed the sum of two matrices and failed
to useit, but it's not as contrived as it seems. No good programmer would deliberately compute a value that's not needed, but during
maintenance, it's not uncommon for a programmer to modify the paths through a program in such away that a formerly useful
computation becomes unnecessary. The likelihood of that happening is reduced by defining objects immediately prior to use (see ltem
E32), but it's «ill a problem that occurs from time to time.

Nevertheless, if that were the only time lazy evaluation paid off, it would hardly be worth the trouble. A more common scenario is that
we need only part of acomputation. For example, suppose we use 8 as follows after initializing it to the sum of nil and n2:

cout << nB[4]; [l print the 4th row of n8
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Clearly we can be completely lazy no longer — we've got to compute the valuesin the fourth row of n3. But let's not be overly
ambitious, either. There's no reason we have to compute any more than the fourth row of n3; the remainder of n8 can remain
uncomputed until it's actually needed. With luck, it never will be.

How likely are we to be lucky? Experience in the domain of matrix computations suggests the odds are in our favor. In fact, lazy
evaluation lies behind the wonder that is APL. APL was developed in the 1960s for interactive use by people who needed to perform
matrix-based cal culations. Running on computers that had less computational horsepower than the chips now found in high-end
microwave ovens, APL was seemingly able to add, multiply, and even divide large matrices instantly! Itstrick was lazy evaluation.
Thetrick was usually effective, because APL userstypically added, multiplied, or divided matrices not because they needed the entire
resulting matrix, but only because they needed a small part of it. APL employed lazy evaluation to defer its computations until it knew
exactly what part of aresult matrix was needed, then it computed only that part. In practice, this allowed users to perform
computationally intensive tasks interactively in an environment where the underlying machine was hopel essly inadequate for an
implementation employing eager evaluation. Machines are faster today, but data sets are bigger and users less patient, so many
contemporary matrix libraries continue to take advantage of lazy evaluation.

To befair, laziness sometimes fails to pay off. If nB isused in thisway,

cout << nB; /1 print out all of nB

thejigis up and we've got to compute a complete value for nB. Similarly, if one of the matrices on which n8 is dependent is about to
be modified, we have to take immediate action:

m = m + nR; /[l remenber that nB is the
// sumof ml and n®
m = n¥; [/ nownB is the sumof nR

// and the OLD val ue of mi!

Here we've got to do something to ensure that the assignment to mL doesn't change nB. Inside the Mat r i x<i nt > assignment
operator, we might compute n8's value prior to changing niL or we might make a copy of the old value of mL and make n8 dependent
on that, but we have to do something to guarantee that n8 has the value it's supposed to have after mL has been the target of an
assignment. Other functions that might modify a matrix must be handled in a similar fashion.

Because of the need to store dependencies between values; to maintain data structures that can store values, dependencies, or a
combination of the two; and to overload operators like assignment, copying, and addition, lazy evaluation in anumerical domainisa
lot of work. On the other hand, it often ends up saving significant amounts of time and space during program runs, and in many
applications, that's a payoff that easily justifies the significant effort lazy evaluation requires.

Summary

These four examples show that lazy evaluation can be useful in avariety of domains: to avoid unnecessary copying of objects, to
distinguish reads from writes using oper at or [ ], to avoid unnecessary reads from databases, and to avoid unnecessary numerical
computations. Nevertheless, it's not always a good idea. Just as procrastinating on your clean-up chores won't save you any work if
your parents always check up on you, lazy evauation won't save your program any work if all your computations are necessary.
Indeed, if al your computations are essential, lazy evaluation may slow you down and increase your use of memory, because, in
addition to having to do all the computations you were hoping to avoid, you'll also have to manipulate the fancy data structures needed
to make lazy evaluation possible in the first place. Lazy evaluation is only useful when there's a reasonable chance your software will
be asked to perform computations that can be avoided.

There's nothing about lazy evaluation that's specific to C++. The technique can be applied in any programming language, and severa
languages — notably APL, some dialects of Lisp, and virtually all dataflow languages — embrace the idea as a fundamental part of
the language. Mainstream programming languages employ eager evaluation, however, and C++ is mainstream. Y et C++ is particularly
suitable as a vehicle for user-implemented lazy evaluation, because its support for encapsul ation makes it possible to add lazy
evaluation to a class without clients of that class knowing it's been done.

Look again at the code fragments used in the above examples, and you can verify that the class interfaces offer no hints about whether
eager or lazy evaluation is used by the classes. That meansit's possible to implement a class using a straightforward eager evaluation
strategy, but then, if your profiling investigations (see Item 16) show that class's implementation is a performance bottleneck, you can
replace its implementation with one based on lazy evaluation. (See also Item E34.) The only change your clients will see (after
recompilation or relinking) isimproved performance. That's the kind of software enhancement clients love, one that can make you
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downright proud to be lazy.

Back to [tem 17: Consider using lazy evaluation.
Continue to Item 19: Understand the origin of temporary objects

Item 18: Amortize the cost of expected computations.

Inltem 17, | extolled the virtues of laziness, of putting things off aslong as possible, and | explained how laziness can improve the
efficiency of your programs. In thisitem, | adopt a different stance. Here, laziness has no place. | now encourage you to improve the
performance of your software by having it do more than it's asked to do. The philosophy of thisitem might be called over-eager
evaluation: doing things before you're asked to do them.

Consider, for example, atemplate for classes representing large collections of numeric data:

t enpl at e<cl ass Nuneri cal Type>

cl ass DataCol | ection {

public:
Nuneri cal Type m n() const;
Nuneri cal Type nmax() const;
Nuneri cal Type avg() const;

-

Assuming the i n, max, and avg functions return the current minimum, maximum, and average values of the collection, there are
three ways in which these functions can be implemented. Using eager evaluation, we'd examine al the datain the collection when

m n, max, or avg was caled, and we'd return the appropriate value. Using lazy evaluation, we'd have the functions return data
structures that could be used to determine the appropriate value whenever the functions' return values were actually used. Using
over-eager evaluation, we'd keep track of the running minimum, maximum, and average values of the collection, so when i n, max,
or avg was called, we'd be able to return the correct value immediately — no computation would be required. If mi n, max, and avg
were called frequently, we'd be able to amortize the cost of keeping track of the collection's minimum, maximum, and average values
over all the callsto those functions, and the amortized cost per call would be lower than with eager or lazy evaluation.

The idea behind over-eager evaluation is that if you expect a computation to be requested frequently, you can lower the average cost
per request by designing your data structures to handle the requests especially efficiently.

One of the simplest ways to do thisis by caching values that have already been computed and are likely to be needed again. For
example, suppose you're writing a program to provide information about employees, and one of the pieces of information you expect
to be requested frequently is an employee's cubicle number. Further suppose that employee information is stored in a database, but, for
most applications, an employee's cubicle number isirrelevant, so the database is not optimized to find it. To avoid having your
specialized application unduly stress the database with repeated lookups of employee cubicle numbers, you could write a

fi ndCubi cl eNunber function that caches the cubicle numbers it looks up. Subsequent requests for cubicle numbers that have
already been retrieved can then be satisfied by consulting the cache instead of querying the database.

Here's one way to implement f i ndCubi cl eNunber ; it usesanmap object from the Standard Template Library (the"STL" — see
Item 35) asalocal cache:

i nt findCubicleNunber(const string& enpl oyeeNane)
{
/1l define a static map to hold (enpl oyee nane, cubicle nunber)
/1l pairs. This map is the local cache.
t ypedef map<string, int> CubicleMp;
static Cubicl eMap cubes;

/1 try to find an entry for enployeeNane in the cache;
/[l the STL iterator "it" will then point to the found
/1l entry, if there is one (see Item 35 for details)
Cubicl eMap::iterator it = cubes.find(enpl oyeeNane);

/1 "it""s value will be cubes.end() if no entry was
/1 found (this is standard STL behavior). If this is
/1l the case, consult the database for the cubicle

/1l nunmber, then add it to the cache

if (it == cubes.end()) {
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int cubicle =
the result of |ooking up enpl oyeeNane's cubicle
nunber in the database;

cubes[ enpl oyeeNane] = cubi cl e; /1 add the pair
/'l (enpl oyeeNane, cubicle)
/'l to the cache
return cubicle;
}
el se {
/1l "it" points to the correct cache entry, which is a
/'l (enpl oyee nanme, cubicle nunber) pair. W want only
/1 the second conponent of this pair, and the menber
/'l "second" will give it to us
return (*it).second;
}
}

Try not to get bogged down in the details of the STL code (which will be clearer after you've read Item 35). Instead, focus on the
general strategy embodied by this function. That strategy isto use alocal cache to replace comparatively expensive database queries
with comparatively inexpensive lookups in an in-memory data structure. Provided we're correct in assuming that cubicle numbers will
frequently be requested more than once, the use of acacheinf i ndCubi cl eNunber should reduce the average cost of returning an
employee's cubicle number.

(One detail of the code requires explanation. The final statement returns( *i t) . second instead of the more conventional

i t->second. Why? The answer has to do with the conventions followed by the STL. In brief, theiterator i t isan object, not a
pointer, so there is no guarantee that - >" can be appliedtoi t .6 The STL doesrequirethat ". " and "* " be valid for iterators,
however, so (*i t) . second, though syntactically clumsy, is guaranteed to work.)

Caching is one way to amortize the cost of anticipated computations. Prefetching is another. Y ou can think of prefetching asthe
computational equivalent of adiscount for buying in bulk. Disk controllers, for example, read entire blocks or sectors of data when
they read from disk, even if a program asks for only a small amount of data. That's because it's faster to read a big chunk once than to
read two or three small chunks at different times. Furthermore, experience has shown that if datain one placeis requested, it's quite
common to want nearby data, too. Thisis the infamous locality of reference phenomenon, and systems designersrely on it to justify
disk caches, memory caches for both instructions and data, and instruction prefetches.

Excuse me? Y ou say you don't worry about such low-level things as disk controllers or CPU caches? No problem. Prefetching can
yield dividends for even one as high-level asyou. Imagine, for example, you'd like to implement atemplate for dynamic arrays, i.e.,
arrays that start with a size of one and automatically extend themselves so that all nonnegative indices are valid:

t enpl at e<cl ass T> /1l tenmplate for dynamc
class DynArray { ... }; /'l array-of-T cl asses
DynArray<doubl e> a; /1 at this point, only a[0]

/1l is alegitimte array
/'] el ement

a[ 22] = 3.5; /1l ais automatically
/| extended: valid indices
/1 are now 0-22

a[32] = 0; /1l a extends itself again;

/1 now a[0]-a[32] are valid
How doesaDynAr r ay object go about extending itself when it needs to? A straightforward strategy would be to alocate only as
much additional memory as needed, something like this:

t enpl at e<cl ass T>
T& DynArray<T>::operator[] (int index)
{
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if (index < 0) {
throw an excepti on; /'l negative indices are
} [/ still invalid

if (index > the current maxi mumindex val ue) {
call new to all ocate enough additional nenory so that
i ndex is valid;

}

return the indexth el enent of the array;

}

This approach simply calls new each time it needs to increase the size of the array, but callsto newinvoke oper at or new (see ltem
8), and callsto oper at or new(and oper at or del et e) are usually expensive. That's because they typically result in callsto the
underlying operating system, and system calls are generally dlower than are in-process function calls. As aresult, we'd like to make as
few system calls as possible.

An over-eager evaluation strategy employs this reasoning: if we have to increase the size of the array now to accommodate index i, the
locality of reference principle suggests we'll probably have to increase it in the future to accommodate some other index a bit larger
than i. To avoid the cost of the memory allocation for the second (anticipated) expansion, we'll increase the size of the DynAr r ay
now by more than isrequired to makei valid, and we'll hope that future expansions occur within the range we have thereby provided
for. For example, we could write DynAr r ay::oper at or [ ] likethis:

t enpl at e<cl ass T>
T& DynArray<T>::operator[](int index)

if (index < 0) throw an excepti on;

if (index > the current maxi mumindex val ue) {
int diff = index - the current maxi mum i ndex val ue;

call new to allocate enough additional nmenory so that
i ndex+di ff is valid;

}

return the indexth el enent of the array;

}

This function allocates twice as much memory as needed each time the array must be extended. If we look again at the usage scenario
we saw earlier, we note that the Dy nAr r ay must allocate additional memory only once, even though itslogical size is extended
twice:

DynArray<doubl e> a; /1l only a[0] is valid

a[ 22] = 3.5; /'l newis called to expand
/] a's storage through
/1 index 44; a's |logica
/'l size becones 23

a[ 32]

I
e

/1l a's logical size is
/1 changed to allow a[ 32],
/1 but newisn't called

If a needs to be extended again, that extension, too, will be inexpensive, provided the new maximum index is no greater than 44.

There is a common theme running through this Item, and that's that greater speed can often be purchased at a cost of increased
memory usage. Keeping track of running minima, maxima, and averages requires extra space, but it saves time. Caching results
necessitates greater memory usage but reduces the time needed to regenerate the results once they've been cached. Prefetching
demands a place to put the things that are prefetched, but it reduces the time needed to access those things. The story isasold as
Computer Science: you can often trade space for time. (Not always, however. Using larger objects means fewer fit on avirtua
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memory or cache page. In rare cases, making objects bigger reduces the performance of your software, because your paging activity
increases, your cache hit rate decreases, or both. How do you find out if you're suffering from such problems? Y ou profile, profile,
profile (see Item 16).

The advice | proffer in this Item — that you amortize the cost of anticipated computations through over-eager strategies like caching
and prefetching — is not contradictory to the advice on lazy evaluation | put forth in Item 17. Lazy evaluation is atechnique for
improving the efficiency of programs when you must support operations whose results are not always needed. Over-eager evaluation
isatechnique for improving the efficiency of programs when you must support operations whose results are almost always needed or
whose results are often needed more than once. Both are more difficult to implement than run-of-the-mill eager evaluation, but both
can yield significant performance improvements in programs whose behavioral characteristics justify the extra programming effort.

Back to [tem 18: Amortize the cost of expected computations

Continue to Item 20: Facilitate the return value optimization

Item 19: Understand the origin of temporary objects.
When programmers speak amongst themselves, they often refer to variables that are needed for only a short while as "temporaries.”
For example, in thisswap routine,

t enpl at e<cl ass T>
voi d swap(T& objectl, T& object?2)

{
T tenp = object 1;
obj ect1 = object 2;
obj ect2 = tenp;

}

it'scommon to call t enp a"temporary." Asfar as C++ is concerned, however, t enp ishot atemporary at al. It's simply an object
local to afunction.

True temporary objectsin C++ are invisible — they don't appear in your source code. They arise whenever a non-heap object is
created but not named. Such unnamed objects usually arise in one of two situations: when implicit type conversions are applied to
make function calls succeed and when functions return objects. It'simportant to understand how and why these temporary objects are
created and destroyed, because the attendant costs of their construction and destruction can have a noticeable impact on the
performance of your programs.

Consider first the case in which temporary objects are created to make function calls succeed. This happens when the type of object
passed to afunction is not the same as the type of the parameter to which it is being bound. For example, consider afunction that
counts the number of occurrences of a character in a string:

/] returns the nunber of occurrences of ch in str
size_t count Char(const string& str, char ch);

char buffer[ MAX_STRI NG _LEN];
char c;

/!l read in a char and a string; use setwto avoid
/'l overflow ng buffer when reading the string
cin >> ¢ >> set W MAX_STRI NG LEN) >> buffer;

cout << "There are " << count Char(buffer, c)
<< " occurrences of the character " << ¢
<< " in" << puffer << endl;

Look at the call to count Char . Thefirst argument passed isachar array, but the corresponding function parameter is of type
const string& Thiscall can succeed only if the type mismatch can be eliminated, and your compilers will be happy to eliminate it
by creating atemporary object of type st r i ng. That temporary object isinitialized by calling the st r i ng constructor with buf f er
asitsargument. The st r parameter of count Char isthen bound to thistemporary st ri ng object. When count Char returns, the
temporary object is automatically destroyed.

Conversions such as these are convenient (though dangerous — see Item 5), but from an efficiency point of view, the construction and

destruction of atemporary st ri ng object isan unnecessary expense. There are two general waysto eliminateit. Oneisto redesign
your cade so conversions like these can't take place. That strategy is examined in [tem 5. An aternative tack isto modify your
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software so that the conversions are unnecessary. Item 21 describes how you can do that.

These conversions occur only when passing objects by value or when passing to areference-to-const parameter. They do not occur
when passing an object to areference-to-non-const parameter. Consider this function:

voi d uppercasify(string& str); /'l changes all chars in
/1 str to upper case

In the character-counting example, achar array could be successfully passed to count Char , but here, trying to call
upper casi fy withachar array fails:

char subt| eBookPlug[] = "Effective C++";

upper casi f y(subt | eBookPl ug) ; [l error!
No temporary is created to make the call succeed. Why not?

Suppose atemporary were created. Then the temporary would be passed to upper casi f y, which would modify the temporary so its
characters were in upper case. But the actual argument to the function call — subt | eBook Pl ug — would not be affected; only the
temporary st r i ng object generated from subt | eBook Pl ug would be changed. Surely thisis not what the programmer intended.
That programmer passed subt | eBookPl ug to upper casi f y, and that programmer expected subt | eBookPl ug to be
modified. Implicit type conversion for references-to-non-const objects, then, would allow temporary objects to be changed when
programmers expected non-temporary objects to be modified. That's why the language prohibits the generation of temporaries for
non-const reference parameters. Reference-to-const parameters don't suffer from this problem, because such parameters, by virtue
of being const , can't be changed.

The second set of circumstances under which temporary objects are created is when afunction returns an object. For instance,
oper at or + must return an object that represents the sum of its operands (see Item E23). Given atype Nunber , for example,
oper at or + for that type would be declared like this:

const Number operator+(const Nunber & | hs,
const Nunber & rhs);

The return value of thisfunction is atemporary, because it has no name: it's just the function's return value. Y ou must pay to construct
and destruct this object each time you call oper at or +. (For an explanation of why the return valueisconst , see Item E21.)

Asusual, you don't want to incur this cost. For this particular function, you can avoid paying by switching to asimilar function,

oper at or +=; Item 22 tells you about this transformation. For most functions that return objects, however, switching to a different
function is not an option and there is no way to avoid the construction and destruction of the return value. At least, there's no way to
avoid it conceptually. Between concept and reality, however, lies a murky zone called optimization, and sometimes you can write your
object-returning functionsin away that allows your compilers to optimize temporary objects out of existence. Of these optimizations,
the most common and useful is the return value optimization, which is the subject of Item 20.

The bottom line is that temporary objects can be costly, so you want to eliminate them whenever you can. More important than this,
however, isto train yourself to look for places where temporary objects may be created. Anytime you see areference-to-const
parameter, the possibility exists that atemporary will be created to bind to that parameter. Anytime you see a function returning an
object, atemporary will be created (and later destroyed). Learn to look for such constructs, and your insight into the cost of "behind
the scenes' compiler actions will markedly improve.
Back to Item 19: Understand the origin of temporary objects
Continue to Item 21: Overload to avoid implicit type conversions

Item 20: Facilitate the return value optimization.

A function that returns an object is frustrating to efficiency aficionados, because the by-value return, including the constructor and
destructor callsit implies (see Item 19), cannot be eliminated. The problem is simple: afunction either has to return an object in order

to offer correct behavior or it doesn't. If it does, there's no way to get rid of the object being returned. Period.

Consider the oper at or * function for rational numbers:

class Rational {
public:
Rational (int numerator = 0, int denominator = 1);
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int nunerator() const;
i nt denoninator() const;

};

/1l For an explanation of why the return value is const,
/]l see ltem6
const Rational operator*(const Rational & | hs,

const Rational & rhs);

Without even looking at the code for oper at or *, we know it must return an object, because it returns the product of two arbitrary
numbers. These are arbitrary numbers. How can oper at or * possibly avoid creating a new object to hold their product? It can't, so it
must create a new object and return it. C++ programmers have neverthel ess expended Herculean effortsin a search for the legendary
elimination of the by-value return (see Items E23 and E31).

Sometimes people return pointers, which leads to this syntactic travesty:

/1 an unreasonable way to avoid returning an object
const Rational * operator*(const Rational & | hs,
const Rational & rhs);

Rati onal a = 10;
Rational b(1, 2);

Rational ¢ = *(a * b); /1 Does this | ook "natural"
/1l to you?

It also raises a question. Should the caller delete the pointer returned by the function? The answer is usually yes, and that usually |eads
to resource leaks.

Other developers return references. That yields an acceptable syntax,

/1 a dangerous (and incorrect) way to avoid returning
/1l an obj ect
const Rational & operator*(const Rational & | hs,

const Rational & rhs);

Rational a = 10;
Rational b(1l, 2);

Rational ¢ = a * b; /1 1 ooks perfectly reasonabl e

but such functions can't be implemented in away that behaves correctly. A common attempt looks like this:

/1 anot her dangerous (and incorrect) way to avoid

/1 returning an object

const Rational & operator*(const Rational & | hs,
const Rational & rhs)

{

Rational result(lhs.nunmerator() * rhs.nunerator(),
| hs. denoni nator() * rhs.denom nator());
return result;

}

This function returns a reference to an object that no longer exists. In particular, it returns areference to the local object r esul t , but
resul t isautomatically destroyed when oper at or * isexited. Returning areference to an object that's been destroyed is hardly
useful.

Trust me on this: some functions (oper at or * among them) just have to return objects. That'sthe way it is. Don't fight it. You can't
win.

That is, you can't win in your effort to eliminate by-value returns from functions that require them. But that's the wrong war to wage.
From an efficiency point of view, you shouldn't care that a function returns an object, you should only care about the cost of that
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object. What you need to do is channel your effortsinto finding away to reduce the cost of returned objects, not to eliminate the
objects themselves (which we now recognize is afutile quest). If no cost is associated with such objects, who cares how many get
created?

It isfrequently possible to write functions that return objects in such away that compilers can eliminate the cost of the temporaries.
Thetrick isto return constructor arguments instead of objects, and you can do it like this;

/1 an efficient and correct way to inplenent a

/1 function that returns an object

const Rational operator*(const Rational & | hs,
const Rational & rhs)

{

return Rational (I hs. nunerator() * rhs. nunerator(),
| hs. denomi nator () * rhs.denom nator());

}

Look closely at the expression being returned. It looks like you're calling aRat i onal constructor, and in fact you are. You're
creating atemporary Rat i onal object through this expression,

Rational (I hs. nunerator() * rhs.nunerator(),
| hs. denoni nator () * rhs.denom nator());

and it isthis temporary object the function is copying for its return value.

This business of returning constructor arguments instead of local objects doesn't appear to have bought you a lot, because you till
have to pay for the construction and destruction of the temporary created inside the function, and you still have to pay for the
construction and destruction of the object the function returns. But you have gained something. The rules for C++ allow compilersto
optimize temporary objects out of existence. Asaresult, if you call oper at or * in acontext likethis,

Rati onal a = 10;
Rational b(1l, 2);

Rational ¢ = a * b; /'l operator* is called here

your compilers are allowed to eliminate both the temporary inside oper at or * and the temporary returned by oper at or *. They
can construct the object defined by ther et ur n expression inside the memory allotted for the object c. If your compilers do this, the
total cost of temporary objects as aresult of your calling oper at or * iszero: no temporaries are created. Instead, you pay for only
one constructor call — the oneto create ¢. Furthermore, you can't do any better than this, because ¢ is anamed object, and named
objects can't be eliminated (see also Item 22).7 Y ou can, however, eliminate the overhead of the call to oper at or * by declaring that
functioni nl i ne (but first see Item E33):

/1l the nost efficient way to wite a function returning

/'l an obj ect

inline const Rational operator*(const Rational & | hs,
const Rational & rhs)

{

return Rational (I hs. nunerator() * rhs.nunerator(),
| hs. denoni nator () * rhs.denom nator());

}

"Y eah, yeah," you mutter, "optimization, schmoptimization. Who cares what compilers can do? | want to know what they do do. Does
any of this nonsense work with real compilers?' It does. This particular optimization — eliminating alocal temporary by using a
function's return location (and possibly replacing that with an object at the function's call site) — is both well-known and commonly
implemented. It even has a name: the return value optimization. In fact, the existence of a name for this optimization may explain why
it's so widely available. Programmers looking for a C++ compiler can ask vendors whether the return value optimization is
implemented. If one vendor says yes and another says " The what?," the first vendor has a notable competitive advantage. Ah,
capitalism. Sometimes you just gottaloveit.
Back to Item 20: Facilitate the return value optimization
Continue to Item 22: Consider using op= instead of stand-alone op

Item 21: Overload to avoid implicit type conversions.

Here's some code that looks nothing if not eminently reasonable:
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class UPInt { /] class for unlimted
public: /'l precision integers
UPI nt () ;

UPI nt (i nt val ue);

H

/1 For an explanation of why the return value is const,
/]l see ltem E21

const UPInt operator+(const UPInt& | hs, const UPInt& rhs);

UPI nt upil, upi?2;

UPInt upi3 = upil + upi?2;
There are no surprises here. upi 1 and upi 2 are both UPI nt objects, so adding them together just callsoper at or + for UPI nt s.

Now consider these statements:
upi 3 = upi 1l + 10;

upi 3 = 10 + upi 2;

These statements al so succeed. They do so through the creation of temporary objects to convert the integer 10 into UPI nt s (see ltem
19).

It is convenient to have compilers perform these kinds of conversions, but the temporary objects created to make the conversions work
are a cost we may not wish to bear. Just as most people want government benefits without having to pay for them, most C++
programmers want implicit type conversions without incurring any cost for temporaries. But without the computational equivalent of
deficit spending, how can we do it?

We can take a step back and recognize that our goal isn't really type conversion, it's being able to make callsto oper at or + witha
combination of UPI nt andi nt arguments. Implicit type conversion happens to be a meansto that end, but let us not confuse means
and ends. Thereis another way to make mixed-type callsto oper at or + succeed, and that's to eliminate the need for type
conversions in the first place. If we want to be able to add UPI nt and i nt objects, all we have to doissay so. We do it by declaring
several functions, each with a different set of parameter types.

const UPInt operator+(const UPInt& | hs, /1 add UPI nt
const UPInt& rhs); /1 and UPI nt

const UPInt operator+(const UPInt& | hs, /! add UPI nt
int rhs); /1 and int

const UPInt operator+(int Ihs, /1 add int and
const UPInt& rhs); /1 UPI nt

UPI nt upil, upi?2;

UPInt upi3 = upil + upi?2; /1 fine, no tenporary for
/1 upil or upi2

upi 3 = upi 1 + 10; /1 fine, no tenporary for
/[l upil or 10

upi 3 = 10 + upi 2; /1 fine, no tenporary for

{1 10 or upi?Z2
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Once you start overloading to eliminate type conversions, you run the risk of getting swept up in the passion of the moment and
declaring functionslike this:

const UPInt operator+(int |hs, int rhs); /1 error!

The thinking here is reasonable enough. For the types UPI nt andi nt , we want to overload on al possible combinations for
oper at or +. Given the three overloadings above, the only one missing isoper at or + taking two i nt arguments, so we want to
add it.

Reasonable or not, there are rules to this C++ game, and one of them isthat every overloaded operator must take at least one argument
of auser-defined type. i nt isn't auser-defined type, so we can't overload an operator taking only arguments of that type. (If thisrule
didn't exist, programmers would be able to change the meaning of predefined operations, and that would surely lead to chaos. For
example, the attempted overloading of oper at or + above would change the meaning of addition oni nt s. Isthat really something
we want people to be able to do?)

Overloading to avoid temporariesisn't limited to operator functions. For example, in most programs, you'll want to allow ast ri ng
object everywhereachar * isacceptable, and vice versa. Similarly, if you're using anumerical classlike conpl ex (see ltem 35),

you'll want typeslikei nt and doubl e to be valid anywhere anumerical object is. As aresult, any function taking arguments of type
string, char*, conpl ex, etc., isareasonable candidate for overloading to eliminate type conversions.

Still, it'simportant to keep the 80-20 rule (see Item 16) in mind. There is no point in implementing a slew of overloaded functions
unless you have good reason to believe that it will make a noticeable improvement in the overall efficiency of the programs that use
them.

Back to Item 21: Overload to avoid implicit type conversions.
Continue to Item 23: Consider adternative libraries

Item 22: Consider using op= instead of stand-alone op.
Most programmers expect that if they can say things like these,

X =X +Y; X =X -Y,;
they can also say thingslike these:
X +=y; X -=Y;

If x and y are of a user-defined type, there is no guarantee that thisis so. Asfar as C++ is concerned, there is no relationship between
oper at or +, oper at or =, and oper at or +=, so if you want all three operators to exist and to have the expected relationship, you
must implement that yourself. Ditto for the operators- , *, / , etc.

A good way to ensure that the natural relationship between the assignment version of an operator (e.g., oper at or +=) and the
stand-alone version (e.g., oper at or +) existsisto implement the latter in terms of the former (see also Item 6). Thisis easy to do:

cl ass Rational {
public:

Rat i onal & operat or +=(const Rational & rhs);
Rati onal & operator-=(const Rational & rhs);

};

/1 operator+ inplemented in terns of operator+=, see
/1 ItemE21 for an explanation of why the return value is

/'l const and page 109 for a warning about inplenentation

const Rational operator+(const Rational & | hs,
const Rational & rhs)
{

}

/1 operator- inplenmented in terns of operator -=

const Rational operator-(const Rational & | hs,
const Rational & rhs)

{

return Rational (I hs) += rhs;

return Rational (I hs) -= rhs;
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}

In this example, operators += and - = are implemented (el sewhere) from scratch, and oper at or + and oper at or - cal themto
provide their own functionality. With this design, only the assignment versions of these operators need to be maintained. Furthermore,
assuming the assignment versions of the operators are in the class's public interface, there is never a need for the stand-al one operators
to be friends of the class (see Item E19).

If you don't mind putting all stand-alone operators at global scope, you can use templates to eliminate the need to write the stand-alone
functions:

t enpl at e<cl ass T>
const T operator+(const T& | hs, const T& rhs)

{
}

t enpl at e<cl ass T>
const T operator-(const T& | hs, const T& rhs)

{
}

return T(lhs) += rhs; /!l see discussion bel ow

return T(lhs) -= rhs; /'l see discussion bel ow

With these templates, as long as an assignment version of an operator is defined for some type T, the corresponding stand-alone
operator will automatically be generated if it's needed.

All thisiswell and good, but so far we have failed to consider the issue of efficiency, and efficiency is, after al, the topic of this
chapter. Three aspects of efficiency are worth noting here. Thefirst isthat, in general, assignment versions of operators are more
efficient than stand-alone versions, because stand-alone versions must typically return a new object, and that costs us the construction
and destruction of atemporary (see Items 19 and 20, as well as Item E23). Assignment versions of operators write to their left-hand

argument, so there is no need to generate atemporary to hold the operator's return value.

The second point is that by offering assignment versions of operators aswell as stand-alone versions, you alow clients of your classes
to make the difficult trade-off between efficiency and convenience. That is, your clients can decide whether to write their code like
this,

Rational a, b, ¢, d, result;

'ré.sult =a+b+c +d; /1 probably uses 3 tenporary
/1 objects, one for each call
/1l to operator+

or likethis:

result = a; /1l no tenporary needed

result += b; /1 no tenporary needed

result += c; /1l no tenporary needed

result += d; /1 no tenporary needed

The former is easier to write, debug, and maintain, and it offers acceptable performance about 80% of the time (see Item 16). The
latter is more efficient, and, one supposes, more intuitive for assembly language programmers. By offering both options, you let clients
develop and debug code using the easier-to-read stand-alone operators while still reserving the right to replace them with the more
efficient assignment versions of the operators. Furthermore, by implementing the stand-alones in terms of the assignment versions,

you ensure that when clients switch from one to the other, the semantics of the operations remain constant.

The final efficiency observation concerns implementing the stand-al one operators. Look again at the implementation for oper at or +:

t enpl at e<cl ass T>
const T operator+(const T& | hs, const T& rhs)
{ return T(lhs) += rhs; }

Theexpression T(| hs) isacall to T's copy constructor. It creates atemporary object whose value isthe same asthat of | hs. This
temporary is then used to invoke oper at or += with r hs, and the result of that operation is returned from oper at or +.8 This code
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seems unnecessarily cryptic. Wouldn't it be better to write it like this?

t enpl at e<cl ass T>
const T operator+(const T& | hs, const T& rhs)

T result(lhs); /1l copy lhs into result
return result += rhs; // add rhs to it and return

}

Thistemplate is almost equivalent to the one above, but thereis acrucia difference. This second template contains a named object,
resul t . Thefact that this object is named means that the return value optimization (see Item 20) was, until relatively recently,
unavailable for thisimplementation of oper at or + (see the footnote on page 104). The first implementation has always been eligible
for the return value optimization, so the odds may be better that the compilers you use will generate optimized code for it.

Now, truth in advertising compels me to point out that the expression
return T(l hs) += rhs;

is more complex than most compilers are willing to subject to the return value optimization. The first implementation above may thus
cost you one temporary object within the function, just as you'd pay for using the named object r esul t . However, the fact remains
that unnamed objects have historically been easier to eliminate than named objects, so when faced with a choice between a named
object and atemporary object, you may be better off using the temporary. It should never cost you more than its named colleague, and,
especially with older compilers, it may cost you less.

All thistalk of named objects, unnamed objects, and compiler optimizationsis interesting, but let us not forget the big picture. The big
pictureisthat assignment versions of operators (such asoper at or +=) tend to be more efficient than stand-alone versions of those
operators (e.g. oper at or +). Asalibrary designer, you should offer both, and as an application developer, you should consider using
assignment versions of operators instead of stand-alone versions whenever performance is at a premium.

Back to Item 22:Consider using op= instead of stand-alone op.
Continue to Item 24: Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI

Item 23: Consider aternative libraries.

Library design is an exercisein compromise. The ideal library is small, fast, powerful, flexible, extensible, intuitive, universally
available, well supported, free of use restrictions, and bug-free. It is also nonexistent. Libraries optimized for size and speed are
typically not portable. Libraries with rich functionality are rarely intuitive. Bug-free libraries are limited in scope. In the real world,
you can't have everything; something always hasto give.

Different designers assign different prioritiesto these criteria. They thus sacrifice different thingsin their designs. As aresult, it is not
uncommon for two libraries offering similar functionality to have quite different performance profiles.

As an example, consider theiostream and stdio libraries, both of which should be available to every C++ programmer. The iostream
library has several advantages over its C counterpart (see Item E2). It's type-safe, for example, and it's extensible. In terms of
efficiency, however, the iostream library generaly suffersin comparison with stdio, because stdio usually results in executables that
are both smaller and faster than those arising from iostreams.

Consider first the speed issue. One way to get afedl for the difference in performance between iostreams and stdio is to run benchmark
applications using both libraries. Now, it's important to bear in mind that benchmarks lie. Not only isit difficult to come up with a set
of inputs that correspond to "typical” usage of aprogram or library, it's also useless unless you have areliable way of determining how
"typical" you or your clients are. Nevertheless, benchmarks can provide some insight into the comparative performance of different
approaches to a problem, so though it would be foolish to rely on them completely, it would also be foolish to ignore them.

Let's examine a simple-minded benchmark program that exercises only the most rudimentary 1/O functionality. This program reads
30,000 floating point numbers from standard input and writes them to standard output in afixed format. The choice between the
iostream and stdio libraries is made during compilation and is determined by the preprocessor symbol STDI O. If this symbol is
defined, the stdio library is used, otherwise the iostream library is employed.

#i fdef STDI O

#i ncl ude <stdio. h>
#el se

#i ncl ude <i ostreanr
#i ncl ude <i omani p>
usi ng nanespace std;
#endi f
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const int VALUES = 30000;

int main()

{
doubl e

d;

for (int n = 1; n <= VALUES;, ++n) {
#i fdef STDI O
scanf ("% f", &d);
printf("9%0.5f", d);

#el se
cin > d;
cout << setw10)
<< setprecision(b5)
<< setiosfl ags(ios::showpoint)
<< setiosflags(ios::fixed)
<< d;
#endi f

if (n %5 == 0) {
#i fdef STDI O

/] # of values to read/wite

/1 set field width
/1 set decimal places
/1 keep trailing Os
/! use these settings

When this program is given the natural logarithms of the positive integers as input, it produces output like this:

printf("\n");
#el se
cout << '\n';
#endi f
}
}
return O;
}
0. 00000 0. 69315 1.09861 1. 38629
1.79176 1.94591 2.07944 2.19722
2.39790 2.48491 2.56495 2. 63906
2. 77259 2.83321 2. 89037 2.94444
3. 04452 3.09104 3. 13549 3.17805

1
2
2
2
3

. 60944
. 30259
. 70805
. 99573
. 21888

Such output demonstrates, if nothing else, that it's possible to produce fixed-format 1/O using iostreams. Of course,

cout <<
<<
<<
<<
<<

setw( 10)

set preci si on(5)

seti osfl ags(i os:: showpoi nt)
setiosfl ags(ios::fixed)

d;

is nowhere near as easy to type as
printf("9%0.5f", d);

but oper at or << isboth type-safe and extensible, and pri nt f is neither.

I have run this program on several combinations of machines, operating systems, and compilers, and in every case the stdio version
has been faster. Sometimesiit's been only alittle faster (about 20%), sometimes it's been substantially faster (nearly 200%), but I've
never come across an iostream implementation that was as fast as the corresponding stdio implementation. In addition, the size of this
trivial program's executable using stdio tends to be smaller (sometimes much smaller) than the corresponding program using
iostreams. (For programs of arealistic size, this difference israrely significant.)

Bear in mind that any efficiency advantages of stdio are highly implementati on-dependent, so future implementations of systems|'ve
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tested or existing implementations of systems | haven't tested may show a negligible performance difference between iostreams and
stdio. In fact, one can reasonably hope to discover an iostream implementation that's faster than stdio, because iostreams determine the
types of their operands during compilation, while stdio functions typically parse aformat string at runtime.

The contrast in performance between iostreams and stdio is just an example, however, it's not the main point. The main point is that
different libraries offering similar functionality often feature different performance trade-offs, so once you've identified the bottlenecks
in your software (via profiling — see Item 16), you should see if it's possible to remove those bottlenecks by replacing one library with
another. If your program has an 1/O bottleneck, for example, you might consider replacing iostreams with stdio, but if it spends a
significant portion of its time on dynamic memory allocation and deallocation, you might seeif there are alternative implementations
of oper at or newand oper at or del et e available (see Item 8 and Item E10). Because different libraries embody different
design decisions regarding efficiency, extensibility, portability, type safety, and other issues, you can sometimes significantly improve
the efficiency of your software by switching to libraries whose designers gave more weight to performance considerations than to
other factors.

Back to Item 23: Consider adternative libraries
Continue to Technigques

Item 24: Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI.

C++ compilers must find away to implement each feature in the language. Such implementation details are, of course,
compiler-dependent, and different compilersimplement language features in different ways. For the most part, you need not concern
yourself with such matters. However, the implementation of some features can have a noticeable impact on the size of objects and the
speed at which member functions execute, so for those features, it's important to have a basic understanding of what compilers are
likely to be doing under the hood. The foremost example of such afeatureisvirtual functions.

When avirtual function is called, the code executed must correspond to the dynamic type of the object on which the function is

invoked; the type of the pointer or reference to the object isimmaterial. How can compilers provide this behavior efficiently? Most
implementations use virtual tables and virtual table pointers. Virtual tables and virtual table pointers are commonly referred to as vtbls
and vptrs, respectively.

A vtbl isusually an array of pointers to functions. (Some compilers use aform of linked list instead of an array, but the fundamental
strategy is the same.) Each class in a program that declares or inherits virtual functions has its own vtbl, and the entriesin a class's vtbl
are pointers to the implementations of the virtual functions for that class. For example, given a class definition like this,

class C1 {
public:
C1();

virtual ~Cl();

virtual void f1();

virtual int f2(char c) const;
virtual void f3(const string& s);

void f4() const;

. Ca
Cl'svirtual table array will look something like this:

implementation of C1:~C1 __—» implementation of C1:~C1
Cl's implementation of C1:£1 C1's [—— implementation of C1::£1
vthl implementation of C1:£2  yith| [3—— implementation of C1::£2

implementation of C1:£3 T II11[1|EFHEHtE!tIE}H of C1-£3
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__—» implementation of C1:~C1

c1l's (H— implementation of C1:£1 C1's
+——— implementation of C1::£2  ythl
== jmplementation of C1::£3

vthl

Cl's
vthl

implementation of C1::
Implementation of C1::
implementation of C1::
implementation of C1::

implementation of C1::
implementation of C1::
implementation of C1::
implementation of C1::

__» implementation of C1::~C1
= implementation of C1::£1
—= |mplementation of C1::£2
= mplementation of C1:£3

~Cl
fl
£2
£3

~C1l
fl
£2
£3

Note that the nonvirtual function f 4 isnot in the table, nor is C1's constructor. Nonvirtua functions — including constructors, which
are by definition nonvirtual — are implemented just like ordinary C functions, so there are no specia performance considerations

surrounding their use.

If aclass C2 inherits from C1, redefines some of the virtual functionsit inherits, and adds some new ones of its own,

class C2: public C1 {

public:
C2();
vi rtual
virtual
vi rtual

b

~C2();
void f1();
void f5(char *str);

/!l nonvirtual function
/1l redefined function
/1 redefined function
[/ new virtual function

its virtual table entries point to the functions that are appropriate for objects of itstype. These entries include pointers to the C1 virtual

functions that C2 chose not to redefine:

implementation of C2::~C2

, implementation of C2::£1 '
C2s implementation of C1:£2 C2s
vibl implementation of C1:£3 vtbl
implementation of C2::£5
R !mp:emen:a:inn n; g;::;{iz
. H——= implementation o : .
cv;:hsl —= implementation of C1::£2 C25s
= implementation of C1::£3 vthi

implementation of C2::£5
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> iImplementation of C2::~C2
, I H——— implementation of C2::£1
C2s o o implementation of C1::£2
vibl 5— implementation of C1::£3
implementation of C2::£5

___—» Implementation of C2::~C2
- implementation of C2::£1
— implementation of C1::£2
g4 implementation of C1::£3
= implementation of C2::£5

C2's =
vthl

This discussion brings out the first cost of virtual functions: you have to set aside space for avirtual table for each class that contains
virtual functions. The size of a class's vtbl is proportional to the number of virtual functions declared for that class (including those it
inherits from its base classes). There should be only one virtual table per class, so the total amount of space required for virtual tables
is not usualy significant, but if you have alarge number of classes or alarge number of virtual functionsin each class, you may find
that the vtbls take a significant bite out of your address space.

Because you need only one copy of aclass'svtbl in your programs, compilers must address atricky problem: where to put it. Most
programs and libraries are created by linking together many object files, but each object file is generated independently of the others.
Which object file should contain the vtbl for any given class? Y ou might think to put it in the object file containing nai n, but libraries
have no mai n, and at any rate the source file containing mai n may make no mention of many of the classes requiring vtbls. How
could compilers then know which vtbls they were supposed to create?

A different strategy must be adopted, and compiler vendors tend to fall into two camps. For vendors who provide an integrated
environment containing both compiler and linker, a brute-force strategy isto generate a copy of the vtbl in each object file that might
need it. The linker then strips out duplicate copies, leaving only a single instance of each vtbl in the final executable or library.

A more common design is to employ a heuristic to determine which object file should contain the vtbl for a class. Usually this
heuristic is as follows: aclasss vthl is generated in the object file containing the definition (i.e., the body) of the first non-inline
non-pure virtual function in that class. Thus, the vtbl for class C1 above would be placed in the abject file containing the definition of
C1::~C1 (provided that function wasn'ti nl i ne), and the vtbl for class C2 would be placed in the object file containing the definition
of C2::~C2 (again, provided that function wasn'ti nl i ne).

In practice, this heuristic works well, but you can get into trouble if you go overboard on declaring virtual functionsi nl i ne (see
Item E33). If all virtual functionsin aclass aredeclared i nl i ne, the heuristic fails, and most heuristic-based implementations then
generate a copy of the classsvthbl in every object file that usesit. In large systems, this can lead to programs containing hundreds or
thousands of copies of aclass's vthl! Most compilers following this heuristic give you some way to control vtbl generation manualy,
but a better solution to this problem isto avoid declaring virtual functionsi nl i ne. Aswell see below, there are good reasons why
present compilerstypicaly ignorethei nl i ne directive for virtual functions, anyway.

Virtual tables are half the implementation machinery for virtual functions, but by themselves they are useless. They become useful
only when there is some way of indicating which vtbl correspondsto each object, and it is the job of the virtual table pointer to
establish that correspondence.

Each object whose class declares virtual functions carries with it a hidden data member that points to the virtual table for that class.
This hidden data member — the vptr — is added by compilers at alocation in the object known only to the compilers. Conceptually,
we can think of the layout of an object that has virtual functions as looking like this:
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Data members Data members Data members Data members Data mem!}EI’S
for the object for the object for the object for the object for the object
Object’s wptr T -, _ -

Object’s vptr Object’s vptr Object's vptr Object's vptr

Data members
for the object

Object’s vptr

This picture shows the vptr at the end of the object, but don't be fooled: different compilers put them in different places. In the
presence of inheritance, an object's vptr is often surrounded by data members. Multiple inheritance complicates this picture, but we'l
deal with that a bit later. At this point, simply note the second cost of virtual functions: you have to pay for an extra pointer inside each
object that is of aclass containing virtual functions.

If your objects are small, this can be a significant cost. If your objects contain, on average, four bytes of member data, for example, the
addition of avptr can double their size (assuming four bytes are devoted to the vptr). On systems with limited memory, this means the
number of objects you can create is reduced. Even on systems with unconstrained memory, you may find that the performance of your
software decreases, because larger objects mean fewer fit on each cache or virtual memory page, and that means your paging activity
will probably increase.

Suppose we have a program with several objects of types C1 and C2. Given the relationships among objects, vptrs, and vtbls that we
have just seen, we can envision the objectsin our program like this:

cl Object

1 0k Dat Ccls
<1 Dbject : ata vihl
c1s M
embers ,
Mgnifz?ers 1 Dbiect vibl e 21 Dbject — |[mplementations
1 Obj —» Implementations P Data —® i ¢ 1's virtual
= flos o of C1's virtual 0 Members - 01 CL S VirlL
] Members L - WA &1 Object - |
<1 Object = —e= functions l vpir functions
Data Data
Members Membars
wplr vptr
€2 Object . c2 Object
Data C2s Data c2's
o2 Object il vtbl roct Members vthl
Data o _L Implementations c2 Objec Vplr | | | .
Members ©2 Object l—= of 02z virtual Data . — mp E!Tlﬁrltﬂtlﬂfls
vptr Data —™ functions Members c2 Object —= of C2's virtual
—Ef i
Members vplr Data "'. functions
wiitr Members
vplr
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el Object
Data
Members ol ﬂhiect
vptr Data
) Members
c1 Object
vptr
Data
Members
vptr
c2 Object
M [Jatha
embers
c2 Object - "r
Data 3
Members o2 Object
vptr Data
Members
vptr
c1 Object
Data
Members 1 Object
vptr Data
) Members
c1 Object
vptr
Data
Members
wptr
c2 Object
Data
) Members
c2 Object —
Data
Members c2 Object
vptr Data
Members
vptr

C1l's

vthl

— |mplementations
:, of Cl_s virtual

— functions

o Implementations
— 0f C2's virtual

-_ -
. functions

— |mplementations
| 0f C1's virtual
— functions

C2’s
o Implementations
— 0f C2's virtual

- .
> functions
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c1 Object c1's
MDT vthl
emoers : .
= “DDb'w — |mplementations
ata . .
_ Members 5 0f C1's virtual
c1 Object P — functions
Data
Members
vptr
c2 Object
Data C2’s
<2 Object Members vthl
Data L : Implementations
Members c2 Object — of C2’s virtual
vptr Data > functions
Members
vptr
c1 Object c1's
Data vtbl
e — _.__—F Implementations
data ¥ -
_ Members | 0f C1's virtual
c1 Object T — functions
Data
Members
vptr
c2 Object
Data Cc2's
2 Obiect Members vthl
= I it > Implementati
ata . Implementations
Members c2 Object — of C2's virtual
vptr Data "'". functions
Members
vptr

Now consider this program fragment:
voi d makeACal | (C1 *pCl)

{
pCl->f1();

}
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Thisisacall to the virtual function f 1 through the pointer pC1. By looking only at this code, there is no way to know which f 1
function — C1::f 1 or C2::f 1 — should be invoked, because pC1l might point to a C1 object or to a C2 object. Y our compilers must
nevertheless generate code for the call tof 1 inside makeACal | , and they must ensure that the correct function is called, no matter
what pC1 pointsto. They do this by generating code to do the following:

1. Follow the object's vptr to its vtbl. Thisis a simple operation, because the compilers know where to look inside the object for
the vptr. (After al, they put it there.) Asaresult, this costs only an offset adjustment (to get to the vptr) and a pointer indirection
(to get to the vthl).

2. Find the pointer in the vtbl that corresponds to the function being called (f 1 in this example). This, too, is simple, because
compilers assign each virtual function a unique index within the table. The cost of thisstep isjust an offset into the vtbl array.

3. Invoke the function pointed to by the pointer located in step 2.

If we imagine that each object has a hidden member called vpt r and that the vtbl index of functionf 1 isi , the code generated for
the statement

pCl->f 1();

(*pCLl->vptr[i]) (pCl); /1 call the function pointed to by the
[l i-th entry in the vtbl pointed to
/1 by pCl->vptr; pCl is passed to the
/1 function as the "this" pointer

Thisisamost as efficient as a non-virtual function call: on most machines it executes only afew more instructions. The cost of calling
avirtual function is thus basically the same as that of calling a function through a function pointer. Virtual functions per se are not
usually a performance bottleneck.

Therea runtime cost of virtual functions has to do with their interaction with inlining. For al practical purposes, virtual functions
aren't inlined. That's because "inline" means "during compilation, replace the call site with the body of the called function,” but
"virtual" means "wait until runtime to see which function iscalled.” If your compilers don't know which function will be called at a
particular call site, you can understand why they won't inline that function call. Thisisthe third cost of virtual functions: you
effectively give up inlining. (Virtua functions can be inlined when invoked through objects, but most virtual function calls are made
through pointers or references to objects, and such calls are not inlined. Because such calls are the norm, virtual functions are
effectively not inlined.)

Everything we've seen so far applies to both single and multiple inheritance, but when multiple inheritance enters the picture, things
get more complex (see Item E43). There isno point in dwelling on details, but with multiple inheritance, offset calculations to find
vptrs within objects become more complicated; there are multiple vptrs within a single object (one per base class); and special vtbls
must be generated for base classes in addition to the stand-alone vtbls we have discussed. As aresult, both the per-class and the
per-object space overhead for virtual functionsincreases, and the runtime invocation cost grows slightly, too.

Multiple inheritance often leads to the need for virtual base classes. Without virtual base classes, if aderived class has more than one
inheritance path to a base class, the data members of that base class are replicated within each derived class object, one copy for each
path between the derived class and the base class. Such replication is almost never what programmers want, and making base classes
virtual eliminates the replication. Virtual base classes may incur a cost of their own, however, because implementations of virtual base
classes often use pointers to virtual base class parts as the means for avoiding the replication, and one or more of those pointers may
be stored inside your objects.

For example, consider this, which | generally call "the dreaded multiple inheritance diamond:"

A
A
class A { «eu }1 / \ class A { ... }: / \
class B: virtual public A { ... }i class B: virtual Publli’.‘ A l: T :I-,'
B [= } B c

class Ci virtual public A | class C: virtual public A § ...

{ «ev )i { E
class D: public B, public € { ... }: \ / class D: public B, public C { ... }: \\ /
o D
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class A { ... }; /\ class A { ... }; /\
class B: virtual public R { ... class B: virtual public A { .. ;

-}
class C: virtual publie A { ... € class C: virtual publiec A { -« };

B c
class D: public B, public C { . \ / class D: public B, public C { ... }; \ /
D

class A { ... }; /\

class B: virtual public A e

class C: wvirtual public A

class D: public B, public { - \ /
A

class A { ... }; /\

class B: virtual public A “as

class C: wvirtual public A B C

) | \ /

D

class public B, public
Here Aisavirtua base class because B and C virtually inherit from it. With some compilers (especially older compilers), the layout
for an object of type Dislikely to look like this:

17 e i
L]
.
]
‘-u ‘!-

19 Lo L]
L]
]

b et
= e

B Data Members
B Data Membears

Pointer to virtual base class

Pointer to virtual base class

¢ Data Members ¢ Data Members

Painter to virtual base class Pointer to virtual base class

D Data Members D Data Members

A Data Members
A Data Members
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B Data Members

Pointer to virtual base class

¢ Data Members

Pointer to virtual base class

D Data Members

A Data Members

B Data Members

Pointer to virtual base class

C Data Members

Pointer to virtual base class

D Data Members

A Data Members

B Data Members

Pointer to virtual base class

¢ Data Members

Pointer to virtual base class

D Data Members

A Data Members
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B Data Members

Pointer to virtual base class

¢ Data Members

Pointer to virtual base class

D Data Members

A Data Members

It seems alittle strange to place the base class data members at the end of the object, but that's often how it's done. Of course,
implementations are free to organize memory any way they like, so you should never rely on this picture for anything more than a
conceptual overview of how virtual base classes may lead to the addition of hidden pointersto your objects. Some implementations
add fewer pointers, and some find waysto add none at all. (Such implementations make the vptr and vtbl serve double duty).

If we combine this picture with the earlier one showing how virtual table pointers are added to objects, we realize that if the base class
Ain the hierarchy on page 119 has any virtual functions, the memory layout for an object of type D could look like this:

B Data Members
B Data Memhers
vptr
vptr - .
B Data Members - ) Pointer to virtual base class
Pointer to virtual base class
vplr
Pointer to virtual base class ¢ Data Members C Data Members
¢ Data Members vptr vptr
vptr Pointer to virtual base class Pointer to virtual base class
Pointer to virtual base class
D Data Members D Data Members D Data Members
A Data Members
A Data Members 2 Data Members
vpir vptr
vptr
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B Data Members

B Data Members

vptr

vptr

Pointer to virtual base class

Pointer to virtual base class

C Data Members

Cc Data Members

vptr

vptr

Pointer to virtual base class

D Data Members

Pointer to virtual base class

D Data Members

A Data Members
A Data Members

vptr

vptr

B Data Members

vptr
Pointer to virtual base class

Cc Data Members

vptr
Pointer to virtual base class

D Data Members

A Data Members

vptr

Here |'ve shaded the parts of the object that are added by compilers. The picture may be misleading, because the ratio of shaded to
unshaded areas is determined by the amount of datain your classes. For small classes, the relative overhead islarge. For classes with
more data, the relative overhead is less significant, though it is typically noticeable.

An oddity in the above diagram is that there are only three vptrs even though four classes are involved. Implementations are free to
generate four vptrsif they like, but three suffice (it turns out that B and D can share a vptr), and most implementations take advantage
of this opportunity to reduce the compiler-generated overhead.

We've now seen how virtual functions make objects larger and preclude inlining, and we've examined how multiple inheritance and
virtual base classes can aso increase the size of objects. Let us therefore turn to our final topic, the cost of runtime type identification
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(RTTI).

RTTI lets us discover information about objects and classes at runtime, so there has to be a place to store the information we're
allowed to query. That information is stored in an object of typet ype_i nf 0, and you can accessthet ype_i nf o object for aclass
by using thet ypei d operator.

There only needs to be a single copy of the RTTI information for each class, but there must be away to get to that information for any
object. Actually, that's not quite true. The language specification states that we're guaranteed accurate information on an object's
dynamic type only if that type has at least one virtual function. This makes RTTI data sound alot like a virtual function table. We need
only one copy of the information per class, and we need away to get to the appropriate information from any object containing a
virtual function. This parallel between RTTI and virtual function tablesis no accident: RTTI was designed to be implementablein
terms of aclasssvthl.

For example, index 0 of avtbl array might contain apointer tothet ype_i nf o object for the class corresponding to that vtbl. The
vtbl for class C1 on page 114 would then look like this:

C1's type_info object Cl's type_info object

. :mp!i;lnelne;flun of C1l:~C1 . implementation of C1:~C1
ClhEI‘ implementation of C1:£1 Cls implementation of C1::£1
" implementation of c1:£2  VtbI implementation of C1:£2
implementation of C1:£3 implementation of C1::£3

__» Clstype_info object
- implementation of C1::~C1
——= implementation of C1::£1
= implementation of C1::£2
implementation of C1::£3

__—w» Clstype_info object
| implementation of C1:~C1 '
—= |mplementation of C1:£1 Cls
— —® mplementation of C1::£2 vthl
implementation of C1::£3

Cl's
vthl

P _Cl’s type_info object
, H——— implementation of C1::~C1
Cls/H o implementation of C1:£1
vtbl B— . implementation of €1::£2
= implementation of C1::£3

___w» Clstype_info object
4 ___» implementation of C1::~C1
—= implementation of C1::£1
—& implementation of C1::£2
= implementation of C1::£3

Cl’s
vthl

With this implementation, the space cost of RTTI is an additional entry in each class vtbl plus the cost of the storage for the
t ype_i nf o object for each class. Just as the memory for virtual tablesis unlikely to be noticeable for most applications, however,
you're unlikely to run into problems dueto the size of t ype_i nf o objects.

The following table summarizes the primary costs of virtual functions, multiple inheritance, virtual base classes, and RTTI:

I ncreases I ncreases Reduces
Feature Size of Objects Per-Class Data Inlining
Virtual Functions Yes Yes Yes
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Multiple Inheritance Yes Yes No
Virtual Base Classes Often Sometimes No
RTTI No Yes No

Some people look at thistable and are aghast. "I'm sticking with C!", they declare. Fair enough. But remember that each of these
features offers functionality you'd otherwise have to code by hand. In most cases, your manual approximation would probably be less
efficient and less robust than the compiler-generated code. Using nested swi t ch statements or cascading i f -t hen-el sesto
emulate virtual function calls, for example, yields more code than virtual function calls do, and the code runs more slowly, too.
Furthermore, you must manually track object types yourself, which means your objects carry around type tags of their own; you thus
often fail to gain even the benefit of smaller objects.

It isimportant to understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI, but it isequally
important to understand that if you need the functionality these features offer, you will pay for it, one way or another. Sometimes you
have |egitimate reasons for bypassing the compiler-generated services. For example, hidden vptrs and pointers to virtual base classes
can make it difficult to store C++ objects in databases or to move them across process boundaries, so you may wish to emulate these
featuresin away that makesit easier to accomplish these other tasks. From the point of view of efficiency, however, you are unlikely
to do better than the compiler-generated implementations by coding these features yourself.
Back to [tem 24
Continue to Item 25: Virtualizing constructors and non-member functions

Techniques

Most of this book is concerned with programming guidelines. Such guidelines are important, but no programmer lives by guidelines
alone. According to the old TV show Felix the Cat, "Whenever he getsin afix, he reachesinto his bag of tricks." Well, if a cartoon
character can have a bag of tricks, so too can C++ programmers. Think of this chapter as a starter set for your bag of tricks.

Some problems crop up repeatedly when designing C++ software. How can you make constructors and non-member functions act like
virtual functions? How can you limit the number of instances of a class? How can you prevent objects from being created on the heap?
How can you guarantee that they will be created there? How can you create objects that automatically perform some actions anytime
some other class's member functions are called? How can you have different objects share data structures while giving clients the
illusion that each hasits own copy? How can you distinguish between read and write usage of oper at or [ ] ? How can you create a
virtual function whose behavior depends on the dynamic types of more than one object?

All these questions (and more) are answered in this chapter, in which | describe proven solutions to problems commonly encountered
by C++ programmers. | call such solutions techniques, but they're also known as idioms and, when documented in a stylized fashion,
patterns. Regardless of what you call them, the information that follows will serve you well as you engage in the day-to-day
skirmishes of practical software development. It should also convince you that no matter what you want to do, thereis almost certainly
away todoitin C++.
Back to Techniques
Continue to Item 26: Limiting the number of objects of aclass

Item 25: Virtualizing constructors and non-member functions.

On the face of it, it doesn't make much sense to talk about "virtual constructors." Y ou call avirtual function to achieve type-specific
behavior when you have a pointer or reference to an object but you don't know what the real type of the object is. You call a
constructor only when you don't yet have an object but you know exactly what type you'd like to have. How, then, can one talk of
virtual constructors?

It's easy. Though virtual constructors may seem nonsensical, they are remarkably useful. (If you think nonsensical ideas are never
useful, how do you explain the success of modern physics?) For example, suppose you write applications for working with
newsl etters, where a newsletter consists of components that are either textual or graphical. Y ou might organize things this way:

cl ass NLConponent { /'l abstract base class for
public: /'l newsletter conponents

/[l contains at |east one
H /1 pure virtual function

cl ass Text Bl ock: public NLConponent {
public:
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I
¥ 1
cl ass Graphic: public NLConponent {
public:

/1
b 1
cl ass NewsLetter { /1
public: /1

Il

private:
| i st <NLConponent *> conponents;

b

The classesrelate in thisway:

mherifance

NewsLetter
object

pointer

public
inheritance
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NewsLetter
object

NLComponent

pointer

public
inheritance

TextBlock

NewsLetter
object

pointer NLComponent

public
inheritance

TextBlock

NewsLetter
object

pointer NLComponent

public
inheritance

TextBlock

Thel i st classusedinside NewsLet t er ispart of the Standard Template Library, which is part of the standard C++ library (see
Item E49 and Item 35). Objects of typel i st behave like doubly linked lists, though they need not be implemented in that way.

NewsLet t er objects, when not being worked on, would likely be stored on disk. To support the creation of aNews| et t er fromits

on-disk representation, it would be convenient to give NewsLet t er aconstructor that takesani st r eam The constructor would
read information from the stream as it created the necessary in-core data structures:

cl ass NewsLetter {
publ i c:
NewsLetter (i stream& str);

—
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Pseudocode for this constructor might look like this,
NewsLetter:: NewsLetter(istream& str)

while (str) {
read the next conponent object fromstr;

add the object to the list of this
newsl etter's conponents;
}
}

or, after moving the tricky stuff into a separate function called r eadConponent , like this:

cl ass NewsLetter {
public:

private:
/'l read the data for the next NLConponent from str,
/] create the conponent and return a pointer to it
static NLConponent * readConponent (istream& str);

1
NewsLetter:: NewsLetter(istrean& str)
{
while (str) {
/1 add the pointer returned by readConponent to the
/'l end of the conponents list; "push back" is a |ist
/1 menber function that inserts at the end of the I|ist
conponent s. push_back(readConponent (str));
}
}

Consider what r eadConponent does. It creates anew object, either a Text Bl ock or aGr aphi ¢, depending on the data it reads.
Because it creates new objects, it acts much like a constructor, but because it can create different types of objects, we call it avirtual
constructor. A virtual constructor isafunction that creates different types of objects depending on theinput it is given. Virtual
constructors are useful in many contexts, only one of which is reading object information from disk (or off a network connection or
from atape, etc.).

A particular kind of virtual constructor — the virtual copy constructor — is also widely useful. A virtual copy constructor returns a
pointer to a new copy of the object invoking the function. Because of this behavior, virtual copy constructors are typically given
names like copySel f, cl oneSel f, or, as shown below, just plain cl one. Few functions are implemented in a more
straightforward manner:

cl ass NLComponent ({

public:
/1 declaration of virtual copy constructor
virtual NLConponent * clone() const = O;

3
cl ass Text Bl ock: public NLComponent ({
public:
virtual TextBlock * clone() const [l virtual copy
{ return new TextBl ock(*this); } /1 constructor
3
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cl ass Graphic: public NLConponent {

public:
virtual Graphic * clone() const /1 virtual copy
{ return new Graphic(*this); } /1l constructor
1

Asyou can see, aclasssvirtual copy constructor just callsitsreal copy constructor. The meaning of "copy" is hence the same for both
functions. If the real copy constructor performs a shallow copy, so doesthe virtual copy constructor. If the real copy constructor
performs a deep copy, so does the virtual copy constructor. If the real copy constructor does something fancy like reference counting
or copy-on-write (see Item 29), so does the virtual copy constructor. Consistency — what awonderful thing.

Notice that the above implementation takes advantage of arelaxation in the rules for virtual function return types that was adopted
relatively recently. No longer must a derived class's redefinition of a base class's virtual function declare the same return type. Instead,
if the function'sreturn typeis a pointer (or areference) to a base class, the derived class's function may return a pointer (or reference)
to aclass derived from that base class. This opens no holesin C++'s type system, and it makes it possible to accurately declare
functions such as virtual copy constructors. That'swhy Text Bl ock'scl one canreturn aText Bl ock* and Gr aphi c'scl one
canreturn aGr aphi c*, even though the return type of NLConponent 'scl one isNLConponent *.

The existence of avirtual copy constructor in NLConponent makesit easy to implement a (normal) copy constructor for
NewsLetter:

cl ass NewsLetter {
public:
NewsLetter(const NewslLetter& rhs);

private:
| i st <NLConponent *> comnponents;
3
NewsLetter:: NewsLetter(const NewsLetter& rhs)
{
/] iterate over rhs's list, using each elenent's
/1 virtual copy constructor to copy the elenent into
/1l the conponents list for this object. For details on
/1 how the followi ng code works, see [tem 35.
for (list<NLConponent*>::const iterator it =
rhs. conponents. begi n() ;
it !'= rhs.conponents. end();
++it) {
/1 "it" points to the current el enment of rhs.conmponents,
/'l so call that elenent's clone function to get a copy
/'l of the elenent, and add that copy to the end of
/'l this object's list of conponents
conmponent s. push_back((*it)->clone());
}
}

Unless you are familiar with the Standard Template Library, this code looks bizarre, | know, but the ideais smple: just iterate over the
list of components for the NewsLet t er object being copied, and for each component in the list, call its virtual copy constructor. We
need avirtual copy constructor here, because the list contains pointers to NLConponent objects, but we know each pointer really
pointsto a Text Bl ock or aG aphi ¢. We want to copy whatever the pointer really pointsto, and the virtual copy constructor does
that for us.

Making Non-Member Functions Act Virtual

Just as constructors can't really be virtual, neither can non-member functions (see Item E19). However, just as it makes sense to
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conceive of functions that construct new objects of different types, it makes sense to conceive of non-member functions whose
behavior depends on the dynamic types of their parameters. For example, suppose you'd like to implement output operators for the
Text Bl ock and Gr aphi ¢ classes. The obvious approach to this problem is to make the output operator virtual. However, the output
operator isoper at or <<, and that function takes an ost r ean® asits |l eft-hand argument; that effectively rules out the possibility of
making it amember function of the Text Bl ock or G- aphi ¢ classes.

(It can be done, but then look what happens:

cl ass NLConponent {

public:
/1 unconventional declaration of output operator
virtual ostream& operator<<(ostream& str) const = O;

3
cl ass Text Bl ock: public NLConmponent {
public:
/1 virtual output operator (also unconventional)
virtual ostream% operator<<(ostream& str) const;
3
class Graphic: public NLConmponent {
public:
/1 virtual output operator (still unconventional)
virtual ostream& operator<<(ostrean& str) const;
3
Text Bl ock t;
G aphic g;
t << cout; /[l print t on cout via
/1 virtual operator<<; note
/1 unconventional syntax
g << cout; /[l print g on cout via

/1 virtual operator<<; note
/1 unconventional syntax

Clients must place the stream object on the right-hand side of the "<<" symbol, and that's contrary to the convention for output
operators. To get back to the normal syntax, we must move oper at or << out of the Text Bl ock and Gr aphi ¢ classes, but if we
do that, we can no longer declare it virtual.)

An alternate approach isto declare avirtual function for printing (e.g., pr i nt ) and defineit for the Text Bl ock and G- aphi ¢
classes. But if we do that, the syntax for printing Text Bl ock and Gr aphi ¢ objectsisinconsistent with that for the other typesin the
language, al of which rely on oper at or << astheir output operator.

Neither of these solutions is very satisfying. What we want is a non-member function called oper at or << that exhibits the behavior
of avirtual function like pr i nt . This description of what we want isin fact very close to adescription of how to get it. We define
both oper at or << and pri nt and have the former call the latter!

cl ass NLComponent ({
public:
virtual ostream& print(ostrean& s) const = O;
3
cl ass Text Bl ock: public NLConponent {
public:
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virtual ostream& print(ostrean& s) const;

s

cl ass Graphic: public NLConponent {
public:
virtual ostream& print(ostream& s) const;

H

inline
ostream& operat or<<(ostrean& s, const NLConponent& c)

{

return c.print(s);

}

Virtual-acting non-member functions, then, are easy. Y ou write virtual functions to do the work, then write a non-virtual function that
does nothing but call the virtual function. To avoid incurring the cost of afunction call for this syntactic sleight-of-hand, of course,
you inline the non-virtual function (see Item E33).

Now that you know how to make non-member functions act virtually on one of their arguments, you may wonder if it's possible to
make them act virtually on more than one of their arguments. It is, but it's not easy. How hard isit? Turn to Item 31; it's devoted to that
guestion.

Back to [tem 25: Virtualizing constructors and non-member functions.
Continue to Item 27: Requiring or prohibiting heap-based objects

Item 26: Limiting the number of objects of aclass.

Okay, you're crazy about objects, but sometimes you'd like to bound your insanity. For example, you've got only one printer in your
system, so you'd like to somehow limit the number of printer objectsto one. Or you've got only 16 file descriptors you can hand out,
S0 you've got to make sure there are never more than that many file descriptor objects in existence. How can you do such things? How
can you limit the number of objects?

If this were a proof by mathematical induction, we might start with n = 1, then build from there. Fortunately, thisis neither a proof nor
an induction. Moreover, it turns out to be instructive to begin with n = 0, so we'll start there instead. How do you prevent objects from
being instantiated at all?

Allowing Zero or One Objects

Each time an object isinstantiated, we know one thing for sure: a constructor will be called. That being the case, the easiest way to
prevent objects of a particular class from being created is to declare the constructors of that class private:

cl ass CantBel nstantiated {
private:
Cant Bel nstanti at ed() ;
Cant Bel nst anti at ed(const Cant Bel nstanti at ed&) ;

H

Having thus removed everybody's right to create objects, we can selectively loosen the restriction. If, for example, we want to create a
classfor printers, but we also want to abide by the constraint that there is only one printer available to us, we can encapsulate the
printer object inside afunction so that everybody has access to the printer, but only a single printer object is created:

class PrintJob; /] forward declaration
/] see ltem E34

class Printer {
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public:
voi d subm tJob(const PrintJob& job);
void reset();
voi d perfornSel f Test();

friend Printer& thePrinter();

private:
Printer();
Printer(const Printer& rhs);

b

Printer& thePrinter()

{
static Printer p; /1l the single printer object
return p;

}

There are three separate components to this design. First, the constructors of the Pr i nt er class are private. That suppresses object
creation. Second, the global functiont hePr i nt er isdeclared afriend of the class. That letst hePr i nt er escape the restriction

imposed by the private constructors. Finally, t hePr i nt er containsastatic Pri nt er object. That means only a single object will
be created.

Client codereferstot hePri nt er whenever it wishesto interact with the system'slone printer. By returning areferenceto a
Pri nt er object,t hePri nt er can beusedin any context whereaPr i nt er object itself could be:

class PrintJob {
public:
PrintJob(const string& what ToPrint);

H
string buffer;

[l put stuff in buffer

thePrinter().reset();
thePrinter().submitJob(buffer);

It's possible, of course, thatt hePri nt er strikesyou as a needless addition to the global namespace. "Yes," you may say, "asa
global function it looks more like a global variable, but global variables are gauche, and 1'd prefer to localize all printer-related
functionality insidethe Pr i nt er class." Well, far be it from me to argue with someone who uses words like gauche. t hePr i nt er
can just as easily be made a static member function of Pri nt er , and that putsit right where you want it. It also eliminates the need
for af ri end declaration, which many regard as tacky in its own right. Using a static member function, Pr i nt er lookslikethis:

class Printer {
public:
static Printer& thePrinter();

private:
Printer();
Printer(const Printeré& rhs);
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Printer& Printer::thePrinter()
{

static Printer p;

return p;

}

Clients must now be a bit wordier when they refer to the printer:

Printer::thePrinter().reset();
Printer::thePrinter().subnitJob(buffer);

Another approach isto move Pri nt er andt hePri nt er out of the global scope and into a namespace (see Item E28). Namespaces
are arecent addition to C++. Anything that can be declared at global scope can aso be declared in a namespace. Thisincludes classes,
structs, functions, variables, objects, typedefs, etc. The fact that something is in a namespace doesn't affect its behavior, but it does
prevent name conflicts between entities in different namespaces. By putting the Pr i nt er classand thet hePri nt er functioninto a
namespace, we don't have to worry about whether anybody el se happened to choose the namesPri nt er ort hePri nt er for
themselves; our namespace prevents name conflicts.

Syntactically, namespaces look much like classes, but there are no public, protected, or private sections; everything is public. Thisis
how we'dput Pri nt er andt hePri nt er intoanamespace called Pri nti ngSt uf f:

nanespace PrintingStuff {

class Printer { /1l this class is in the
publi c: /1 PrintingStuff nanespace

voi d submi tJob(const PrintJob& job);
void reset();
voi d perfornSel f Test();

friend Printer& thePrinter();
private:

Printer();
Printer(const Printer& rhs);

1
Printer& thePrinter() /1 so is this function
{
static Printer p;
return p;
}
} /! this is the end of the

/'l namespace

Given this namespace, clients canrefer tot hePr i nt er using afully-qualified name (i.e., one that includes the name of the
namespace),

PrintingStuff::thePrinter().reset();
PrintingStuff::thePrinter().subm tJob(buffer);

but they can also employ ausi ng declaration to save themselves keystrokes:

using PrintingStuff::thePrinter; /1 inport the name
/1 "thePrinter" fromthe
/'l namespace "PrintingStuff"”
/1 into the current scope

thePrinter().reset(); /'l now thePrinter can be
thePrinter().submtJob(buffer); /1 used as if it were a
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/] local nane

There are two subtletiesin the implementation of t hePr i nt er that are worth exploring. First, it'simportant that the single

Pri nt er object be static in afunction and not in a class. An abject that's staticin aclassis, for all intents and purposes, always
constructed (and destructed), even if it's never used. In contrast, an object that's static in afunction is created the first time through the
function, so if the function is never caled, the object is never created. (Y ou do, however, pay for a check each time the function is
called to see whether the object needs to be created.) One of the philosophical pillars on which C++ was built is the idea that you
shouldn't pay for things you don't use, and defining an object like our printer as a static object in afunction is one way of adhering to
this philosophy. It's a philosophy you should adhere to whenever you can.

There is another drawback to making the printer a class static versus afunction static, and that has to do with its time of initialization.
We know exactly when afunction static isinitialized: the first time through the function at the point where the static is defined. The
situation with a class static (or, for that matter, a global static, should you be so gauche asto use one) islesswell defined. C++ offers
certain guarantees regarding the order of initialization of statics within a particular translation unit (i.e., a body of source code that
yields asingle object file), but it says nothing about the initialization order of static objects in different translation units (see Item
EA47). In practice, this turns out to be a source of countless headaches. Function statics, when they can be made to suffice, allow us to
avoid these headaches. In our example here, they can, so why suffer?

The second subtlety has to do with the interaction of inlining and static objects inside functions. Look again at the code for the
non-member version of t hePri nt er:
Printer& thePrinter()
{
static Printer p;
return p;

}

Except for the first time through this function (when p must be constructed), thisis a one-line function — it consists entirely of the
statement "r et ur n p;". If ever there were agood candidate for inlining, this function would certainly seem to be the one. Y et it's not
declared i nl i ne. Why not?

Consider for amoment why you'd declare an object to be static. It's usually because you want only a single copy of that object, right?
Now consider what i nl i ne means. Conceptually, it means compilers should replace each call to the function with a copy of the
function body, but for non-member functions, it also means something else. It means the functions in question have internal linkage.

Y ou don't ordinarily need to worry about such linguistic mumbo jumbo, but there is one thing you must remember: functions with
internal linkage may be duplicated within a program (i.e., the object code for the program may contain more than one copy of each
function with internal linkage), and this duplication includes static objects contained within the functions. The result? If you create an
inline non-member function containing alocal static object, you may end up with more than one copy of the static object in your
program! So don't create inline non-member functions that contain local static data.9

But maybe you think this business of creating a function to return areference to a hidden object is the wrong way to go about limiting
the number of objectsin thefirst place. Perhaps you think it's better to simply count the number of objectsin existence and throw an
exception in a constructor if too many objects are requested. In other words, maybe you think we should handle printer creation like
this:

class Printer {

public:
cl ass TooMany(Obj ect s{}; /'l exception class for use
/1l when too many objects
/1 are requested
Printer();
~Printer();
private:

static size_ t nunlbjects;

Printer(const Printeré& rhs); /[l thereis alimt of 1
/1 printer, so never allow
}s /1 copying (see |tem E27)
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Theideaisto use nunthj ect s to keep track of how many Pri nt er objectsarein existence. Thisvalue will be incremented in the
class constructor and decremented in its destructor. If an attempt is made to construct too many Printer objects, we throw an exception
of type TooManybj ect s:

/[l oligatory definition of the class static
size_t Printer::numlbjects = O;

Printer::Printer()

{
if (nunbjects >= 1) {
t hrow TooManyQbj ect s();
}
proceed with nornmal construction here;
++numbj ect s;
}
Printer::~Printer()
{
perform normal destruction here;
- -numbj ect s;
}

This approach to limiting object creation is attractive for a couple of reasons. For one thing, it's straightforward — everybody should
be able to understand what's going on. For another, it's easy to generalize so that the maximum number of objects is some number
other than one.

Contexts for Object Construction
There is also a problem with this strategy. Suppose we have a special kind of printer, say, a color printer. The class for such printers

would have much in common with our generic printer class, so of course we'd inherit from it:
class ColorPrinter: public Printer {

3

Now suppose we have one generic printer and one color printer in our system:
Printer p;
Col orPrinter cp;

How many Pr i nt er objects result from these object definitions? The answer istwo: one for p and onefor the Pri nt er part of cp.
At runtime, aTooManyQhj ect s exception will be thrown during the construction of the base class part of cp. For many
programmers, thisis neither what they want nor what they expect. (Designs that avoid having concrete classes inherit from other
concrete classes do not suffer from this problem. For details on this design philosophy, see Item 33.)

A similar problem occurs when Pr i nt er objects are contained inside other objects:

cl ass CPFMachi ne { /1 for machines that can
private: /'l copy, print, and fax
Printer p; [l for printing capabilities
FaxMachi ne f; /1 for faxing capabilities
CopyMachi ne c; /1 for copying capabilities
b
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CPFMachi ne nl; [l fine

CPFMachi ne ng; /1 throws TooManyQbj ects exception

The problemisthat Pri nt er objects can exist in three different contexts: on their own, as base class parts of more derived objects,
and embedded inside larger objects. The presence of these different contexts significantly muddies the waters regarding what it means
to keep track of the "number of objectsin existence," because what you consider to be the existence of an object may not jibe with
your compilers.

Often you will be interested only in allowing objects to exist on their own, and you will wish to limit the number of those kinds of
instantiations. That restriction is easy to satisfy if you adopt the strategy exemplified by our original Pr i nt er class, because the

Pri nt er constructors are private, and (in the absence of f r i end declarations) classes with private constructors can't be used as
base classes, nor can they be embedded inside other objects.

The fact that you can't derive from classes with private constructors leads to a general scheme for preventing derivation, one that
doesn't necessarily have to be coupled with limiting object instantiations. Suppose, for example, you have a class, FSA, for
representing finite state automata. (Such state machines are useful in many contexts, among them user interface design.) Further
suppose you'd like to allow any number of FSA objects to be created, but you'd also like to ensure that no class ever inherits from
FSA. (One reason for doing this might be to justify the presence of anonvirtua destructor in FSA. Item E14 explains why base classes
generally need virtual destructors, and Item 24 explains why classes without virtual functionsyield smaller objects than do equivalent
classes with virtual functions.) Here's how you can design FSA to satisfy both criteria:
class FSA {
public:
/'l pseudo-constructors
static FSA * makeFSA();
static FSA * makeFSA(const FSA& rhs);

private:
FSA() ;
FSA(const FSA& rhs);

—_

FSA * FSA: : makeFSA()
{ return new FSA(); }

FSA * FSA:: makeFSA(const FSA& rhs)
{ return new FSA(rhs); }

Unlikethet hePri nt er function that always returned areference to a single object, each mak e FSA pseudo-constructor returns a
pointer to a unique object. That's what alows an unlimited number of FSA objects to be created.

Thisisnice, but the fact that each pseudo-constructor calls newimpliesthat callers will have to remember to call del et e.
Otherwise aresource leak will be introduced. Callers who wish to have del et e called automatically when the current scopeis exited
can store the pointer returned from makeFSAin anaut o_pt r object (see ltem 9); such objects automatically delete what they point
to when they themselves go out of scope:

/1 indirectly call default FSA constructor
aut o_ptr<FSA> pfsal(FSA: : makeFSA());

/1l indirectly call FSA copy constructor
aut o_ptr <FSA> pfsa2(FSA: : makeFSA(*pfsal));

/1l use pfsal and pfsa2 as nornal pointers,
/1 but don't worry about deleting them

Allowing Objectsto Come and Go

We now know how to design a class that allows only a single instantiation, we know that keeping track of the number of objects of a
particular classis complicated by the fact that object constructors are called in three different contexts, and we know that we can
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eliminate the confusion surrounding object counts by making constructors private. It is worthwhile to make one final observation. Our
use of thet hePr i nt er function to encapsulate accessto a single object limits the number of Pri nt er objectsto one, but it also
limitsusto asingle Pri nt er object for each run of the program. As aresult, it's not possible to write code like this:

create Printer object pil;
use pl;

destroy pl;

create Printer object p2;
use p2;

destroy p2;

This design never instantiates morethan asingle Pri nt er object at atime, but it does use different Pri nt er objectsin different
parts of the program. It somehow seems unreasonable that thisisn't allowed. After al, at no point do we violate the constraint that only
one printer may exist. Isn't there away to make this legal?

Thereis. All we haveto do is combine the object-counting code we used earlier with the pseudo-constructors we just saw:

class Printer {
public:
cl ass TooManyObj ect s{};

/| pseudo- constructor
static Printer * makePrinter();

~Printer();

voi d subm tJob(const PrintJob& job);
void reset();
voi d perforntel f Test();

private:
static size_ t nunbjects;

Printer();

Printer(const Printer& rhs); /1 we don't define this
H /1 function, because we'll
/'l never allow copying
/1l (see Item E27)

/1 obligatory definition of class static
size_t Printer::nunCbjects = 0;

Printer::Printer()
{
if (nunmObjects >= 1) {
t hrow TooManyQhj ects();
}

proceed wi th normal object construction here;

++numbj ect s;
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}

Printer * Printer::mkePrinter()
{ return new Printer; }

If the nation of throwing an exception when too many objects are requested strikes you as unreasonably harsh, you could have the
pseudo-constructor return anull pointer instead. Clients would then have to check for this before doing anything with it, of course.

ClientsusethisPr i nt er classjust asthey would any other class, except they must call the pseudo-constructor function instead of the
real constructor:

Printer pl, /'l error! default ctor is
/1 private

Printer *p2 =
Printer::makePrinter(); /1 fine, indirectly calls
/1 default ctor
Printer p3 = *p2; /1 error! copy ctor is
/'l private
p2->perforntel f Test(); /1 all other functions are
p2->reset(); /1 called as usual
del ete p2; /] avoid resource leak; this

/1 woul d be unnecessary if
/1l p2 were an auto_ptr

Thistechniqueis easily generalized to any number of objects. All we have to do is replace the hard-wired constant 1 with a
class-specific value, then lift the restriction against copying objects. For example, the following revised implementation of our
Printer classalowsupto10Pri nt er objectsto exist:

class Printer {
public:
cl ass TooManyQbj ect s{};

/'l pseudo-constructors
static Printer * makePrinter();
static Printer * makePrinter(const Printer& rhs);

private:
static size_t nunmObjects;
static const size_ t maxCbjects = 10; /'l see bel ow
Printer();

Printer(const Printer& rhs);

H

/1 oligatory definitions of class statics
size t Printer::numlbjects = O;
const size_t Printer::maxQojects;

Printer::Printer()

{
i f (numbj ects >= maxChj ects) {
t hrow TooManyQbj ect s();

}
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}
Printer::Printer(const Printer& rhs)
{
i f (nunObjects >= nax(bj ects) {
t hrow TooManyQbj ect s();
}
}

Printer * Printer::mkePrinter()
{ return new Printer; }

Printer * Printer::nmakePrinter(const Printer& rhs)
{ return new Printer(rhs); }

Don't be surprised if your compilers get all upset about the declaration of Pri nt er ::naxChj ect s in the class definition above. In
particular, be prepared for them to complain about the specification of 10 asan initial value for that variable. The ability to specify
initial valuesfor static const members (of integral type, e.g., i nt s, char s, enums, etc.) inside a class definition was added to C++
only relatively recently, so some compilers don't yet alow it. If your compilers are as-yet-unupdated, pacify them by declaring

max Cbj ect s to be an enumerator inside a private anonymous enum,

class Printer {

private:
enum { maxQojects = 10 }; /1 within this class,
/1 maxCbjects is the
}; [/l constant 10
or by initializing the constant static likeanon-const static member:
class Printer {
private:
static const size t nax(Cbjects; /!l no initial value given
3

/!l this goes in a single inplenmentation file
const size_t Printer::maxQbjects = 10;

This latter approach has the same effect as the original code above, but explicitly specifying theinitial valueis easier for other
programmers to understand. When your compilers support the specification of initial valuesfor const static membersin class
definitions, you should take advantage of that capability.

An Object-Counting Base Class

Initialization of statics aside, the approach above works like the proverbial charm, but there is one aspect of it that continues to nag. If
we had alot of classeslike Pr i nt er whose instantiations needed to be limited, we'd have to write this same code over and over, once
per class. That would be mind-numbingly dull. Given afancy-pants language like C++, it somehow seems we should be able to
automate the process. Isn't there a way to encapsul ate the notion of counting instances and bundle it into a class?

We can easily come up with abase class for counting object instances and have classes like Pr i nt er inherit from that, but it turns
out we can do even better. We can actually come up with away to encapsulate the whole counting kit and kaboodle, by which | mean
not only the functions to manipulate the instance count, but also the instance count itself. (We'll see the need for asimilar trick when
we examine reference counting in Item 29. For a detailed examination of this design, see my article on counting objects.)
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The counter inthe Pr i nt er classisthe static variable nuntbj ect s, so we need to move that variable into an instance-counting
class. However, we also need to make sure that each class for which we're counting instances has a separate counter. Use of a
counting class template lets us automatically generate the appropriate number of counters, because we can make the counter a static
member of the classes generated from the template:

t enpl at e<cl ass Bei ngCount ed>
cl ass Counted {
public:
cl ass TooMany(Obj ect s{}; /1 for throw ng exceptions

static int objectCount() { return nunibjects; }

pr ot ect ed:
Count ed() ;
Count ed(const Counted& rhs);

~Counted() { --nunmojects; }

private:
static int nuntbjects;
static const size_t nmaxChjects;

void init(); /1 to avoid ctor code
}s /1 duplication

t enpl at e<cl ass Bei ngCount ed>
Count ed<Bei ngCount ed>: : Count ed()

{ init(); }

t enpl at e<cl ass Bei ngCount ed>
Count ed<Bei ngCount ed>: : Count ed( const Count ed<Bei ngCount ed>&)

{ init(); }

t enpl at e<cl ass Bei hgCount ed>
voi d Count ed<Bei ngCounted>::init()

i f (nunCbjects >= nax(hj ects) throw TooManyObj ects();
++nunmbj ect s;

}

The classes generated from this template are designed to be used only as base classes, hence the protected constructors and destructor.
Note the use of the private member functioni ni t to avoid duplicating the statementsin the two Count ed constructors.

We can now modify the Pri nt er classto use the Count ed template:

class Printer: private Counted<Printer> {
public:
/'l pseudo-constructors
static Printer * makePrinter();
static Printer * nmakePrinter(const Printer& rhs);

~Printer();
voi d subm tJob(const PrintJob& job);

void reset();
voi d perforntel f Test ();

usi ng Count ed<Pri nt er>:: obj ect Count ; /'l see bel ow
usi ng Count ed<Pri nter>:: TooManyhj ects; // see bel ow
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private:
Printer();
Printer(const Printer& rhs);

b

Thefact that Pr i nt er usesthe Count ed template to keep track of how many Pr i nt er objectsexist is, frankly, nobody's business
but the author of Pri nt er 's. Such implementation details are best kept private, and that's why private inheritance is used here (see
Item E42). The alternative would be to use public inheritance between Pr i nt er and Count ed<Pr i nt er >, but then we'd be
obliged to give the Count ed classes avirtual destructor. (Otherwise we'd risk incorrect behavior if somebody deleted aPr i nt er
object through a Count ed<Pr i nt er >* pointer — see Item E14.) Asltem 24 makes clear, the presence of avirtual functionin
Count ed would almost certainly affect the size and layout of objects of classes inheriting from Count ed. We don't want to absorb
that overhead, and the use of private inheritance lets us avoid it.

Quite properly, most of what Count ed doesis hidden from Pr i nt er 'sclients, but those clients might reasonably want to find out
how many Pr i nt er objectsexist. The Count ed template offersthe obj ect Count function to provide this information, but that
function becomes private in Pr i nt er dueto our use of private inheritance. To restore the public accessibility of that function, we
employ ausi ng declaration:

class Printer: private Counted<Printer> {
public:

usi ng Count ed<Pri nter>::objectCount; // make this function
/1l public for clients
/1 of Printer

—

Thisis perfectly legitimate, but if your compilers don't yet support namespaces, they won't allow it. If they don't, you can use the older
access declaration syntax:

class Printer: private Counted<Printer> {
public:

Count ed<Pri nt er >: : obj ect Count ; /1 make obj ect Count
/1 public in Printer

b

This more traditional syntax has the same meaning asthe usi ng declaration, but it's deprecated. The class TooManyhj ect s is
handled in the same fashion asobj ect Count , because clients of Pri nt er must have accessto TooMany(hj ect s if they areto
be able to catch exceptions of that type.

When Pr i nt er inheritsfrom Count ed<Pr i nt er >, it can forget about counting objects. The class can be written as if somebody
€l se were doing the counting for it, because somebody else (Count ed<Pri nt er >)is. A Pri nt er constructor now looks like this:

Printer::Printer()

{
}

What's interesting here is not what you see, it's what you don't. No checking of the number of objectsto seeif the limit is about to be
exceeded, no incrementing the number of objectsin existence once the constructor is done. All that is now handled by the

Count ed<Pr i nt er > constructors, and because Count ed<Pr i nt er > isabaseclassof Pri nt er , we know that a

Count ed<Pr i nt er > constructor will always be called beforea Pr i nt er constructor. If too many objects are created, a

Count ed<Pr i nt er > constructor throws an exception, and the Pr i nt er constructor won't even be invoked. Nifty, huh?

proceed with nornal object construction;

Nifty or not, there's one loose end that demandsto be tied, and that's the mandatory definitions of the staticsinside Count ed. It's easy
enough to take care of numObj ect s — wejust put thisin Count ed'simplementation file:

t enpl at e<cl ass Bei ngCount ed> /1 defines nunthjects
i nt Count ed<Bei ngCount ed>: : nunbj ect s; /! and automatically
/[l initializes it to O

file:///IC|/mauro/Mec/M.htm (104 of 218) [2001-01-17 10:54:28]


file:///C|/mauro/EC/E_FR.HTM#21052
file:///C|/mauro/EC/E_FR.HTM#223029

More Effective C++ | Book

The situation with naxCbj ect s isabit trickier. To what value should we initialize this variable? If we want to allow up to 10
printers, we should initialize Count ed<Pr i nt er >::maxQbj ect s to 10. If, on the other hand, we want to allow up to 16 file
descriptor objects, we should initialize Count ed<Fi | eDescri pt or >::naxhj ect s to 16. What to do?

We take the easy way out: we do nothing. We provide no initialization at all for maxQbj ect s. Instead, we require that clients of the
class provide the appropriate initialization. The author of Pri nt er must add thisto an implementation file;

const size_t Counted<Printer>::nmaxChjects = 10;
Similarly, the author of Fi | eDescri pt or must add this:
const size t Counted<Fil eDescriptor>::nmaxChjects = 16;

What will happen if these authors forget to provide a suitable definition for maxObj ect s? Simple: they'll get an error during linking,
because max Cbj ect s will be undefined. Provided we've adequately documented this requirement for clients of Count ed, they can
then say "Duh" to themselves and go back and add the requisite initialization.
Back to [tem 26: Limiting the number of objects of aclass
Continue to Item 28:Smart pointers

Item 27: Requiring or prohibiting heap-based objects.

Sometimes you want to arrange things so that objects of a particular type can commit suicide, i.e., can"del et e t hi s." Such an
arrangement clearly requires that objects of that type be allocated on the heap. Other times you'll want to bask in the certainty that
there can be no memory leaks for a particular class, because none of the objects could have been alocated on the heap. This might be
the case if you are working on an embedded system, where memory leaks are especially troublesome and heap space is at a premium.
Isit possible to produce code that requires or prohibits heap-based objects? Ofteniit is, but it also turns out that the notion of being "on
the heap" is more nebulous than you might think.

Requiring Heap-Based Objects

Let us begin with the prospect of limiting object creation to the heap. To enforce such arestriction, you've got to find away to prevent
clients from creating objects other than by calling new. Thisis easy to do. Non-heap objects are automatically constructed at their
point of definition and automatically destructed at the end of their lifetime, so it suffices to ssimply make these implicit constructions
and destructionsillegal.

The straightforward way to make these callsillegal isto declare the constructors and the destructor pri vat e. Thisisoverkill. There's
no reason why they both need to be private. Better to make the destructor private and the constructors public. Then, in a process that
should be familiar from [tem 26, you can introduce a privileged pseudo-destructor function that has access to the real destructor.

Clients then call the pseudo-destructor to destroy the objects they've created.

If, for example, we want to ensure that objects representing unlimited precision numbers are created only on the heap, we can do it like
this:
cl ass UPNunber {
public:
UPNunber () ;
UPNunber (i nt initVal ue);
UPNunber (doubl e initVal ue);
UPNunber (const UPNunber & r hs);

/| pseudo-destructor (a const nenber function, because
/1l even const objects may be destroyed)
voi d destroy() const { delete this; }

private:
~UPNunber () ;

b
Clients would then program like this:

UPNunber n; /'l error! (legal here, but
/1 illegal when n's dtor is
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[l later inplicitly invoked)

UPNunber *p = new UPNunber; /1 fine

del ete p; /1 error! attenpt to call
/1 private destructor

p- >destroy(); /[l fine

An alternative is to declare all the constructors private. The drawback to that ideais that a class often has many constructors, and the
class's author must remember to declare each of them private. Thisincludes the copy constructor, and it may include a default
constructor, too, if these functions would otherwise be generated by compilers; compiler-generated functions are always public (see
Item E45). Asaresult, it's easier to declare only the destructor private, because a class can have only one of those.

Restricting access to a class's destructor or its constructors prevents the creation of non-heap objects, but, in a story that istold in Item
26, it also prevents both inheritance and containment:

cl ass UPNunmber { ... }; /! declares dtor or ctors
/1 private

cl ass NonNegati veUPNunber :
public UPNunmber { ... }; /!l error! dtor or ctors
/1 won't conpile

cl ass Asset {
private:
UPNunber val ue;
/] error! dtor or ctors
/1 won't conpile

H

Neither of these difficulties isinsurmountable. The inheritance problem can be solved by making UPNunber 's destructor protected
(while keeping its constructors public), and classes that need to contain objects of type UPNunber can be modified to contain
pointersto UPNunber objectsinstead:

cl ass UPNunmber { ... }; /1 declares dtor protected

cl ass NonNegati veUPNumnber :
public UPNunmber { ... }; /1 now okay; derived
/'l classes have access to
/1 protected nenbers

cl ass Asset {

public:
Asset (int initValue);
~Asset () ;
private:
UPNunber *val ue;
3
Asset:: Asset (i nt initValue)
: val ue(new UPNunber (i nitVal ue)) /1 fine
{ ...}
Asset :: ~Asset ()
{ val ue->destroy(); } /1 also fine
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Determining Whether an Object is On The Heap

If we adopt this strategy, we must reexamine what it means to be "on the heap.” Given the class definition sketched above, it'slegal to
define anon-heap NonNegat i veUPNunber object:

NonNegat i veUPNunber n; [l fine

Now, the UPNunber part of the NonNegat i veUPNunber object n isnot on the heap. Is that okay? The answer depends on the
details of the class's design and implementation, but let us suppose it is not okay, that all UPNunber objects— even base class parts
of more derived objects — must be on the heap. How can we enforce this restriction?

Thereisno easy way. It isnot possible for a UPNunber constructor to determine whether it's being invoked as the base class part of a
heap-based object. That is, thereis no way for the UPNunber constructor to detect that the following contexts are different:

NonNegat i veUPNunber *nl =
new NonNegat i veUPNunber ; /'l on heap

NonNegat i veUPNunber n2; /'l not on heap

But perhaps you don't believe me. Perhaps you think you can play games with the interaction among the new operator, oper at or
new and the constructor that the new operator calls (see Item 8). Perhaps you think you can outsmart them all by modifying

UPNunber asfollows;

cl ass UPNunber {

public:
/1l exception to throwif a non-heap object is created
cl ass HeapConstraintViolation {};

static void * operator new(size t size);

UPNurber () ;

private:
stati c bool onTheHeap; /1 inside ctors, whether
/'l the object being
/1 constructed is on heap

b

/1 obligatory definition of class static
bool UPNunber::onTheHeap = fal se;

voi d *UPNunber: : operator new(size t size)

{
onTheHeap = true;

return ::operator new size);

}

UPNunber : : UPNunber ()

{
if (!onTheHeap) {

t hr ow HeapConstraint Vi ol ation();
}

proceed with nornmal construction here;

onTheHeap = fal se; /1 clear flag for next obj.

}

There's nothing deep going on here. Theideais to take advantage of the fact that when an object is allocated on the heap, oper at or
newis called to allocate the raw memory, then a constructor is called to initialize an object in that memory. In particular, oper at or
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newsetsonTheHeap to true, and each constructor checks onTheHeap to seeif the raw memory of the object being constructed was
alocated by oper at or new. If not, an exception of type HeapConst r ai nt Vi ol at i on isthrown. Otherwise, construction
proceeds as usual, and when construction isfinished, onTheHeap is set to false, thus resetting the default value for the next object to
be constructed.

Thisis anice enough idea, but it won't work. Consider this potential client code:
UPNunber *nunber Array = new UPNunber[ 100];

The first problem is that the memory for the array is allocated by oper at or new ], not oper at or new, but (provided your
compilers support it) you can write the former function as easily asthe latter. What is more troublesome is the fact that
nunber Ar r ay has 100 elements, so there will be 100 constructor calls. But there is only one call to allocate memory, so
onTheHeap will be set to true for only the first of those 100 constructors. When the second constructor is called, an exception is
thrown, and woe is you.
Even without arrays, this bit-setting business may fail. Consider this statement:

UPNunber *pn = new UPNunber (*new UPNunber);
Here we create two UPNunber s on the heap and make pn point to one of them; it'sinitialized with the value of the second one. This
code has aresource leak, but let usignore that in favor of an examination of what happens during execution of this expression:

new UPNunber (*new UPNunber)

This contains two calls to the new operator, hence two callsto oper at or new and two callsto UPNunber constructors (see Item 8).
Programmers typically expect these function calls to be executed in this order,

1. Call oper at or newfor first object
2. Call constructor for first object
3. Call oper at or newfor second object
4. Call constructor for second object
but the language makes no guarantee that thisis how it will be done. Some compilers generate the function callsin this order instead:
1. Call oper at or newfor first object
2. Call oper at or newfor second object
3. Call constructor for first object
4. Call constructor for second object

There is nothing wrong with compilers that generate this kind of code, but the set-a-bit-in-oper at or -newtrick fails with such
compilers. That's because the bit set in steps 1 and 2 is cleared in step 3, thus making the object constructed in step 4 think it's not on
the heap, even though it is.

These difficulties don't invalidate the basic idea of having each constructor check to seeif *t hi s ison the heap. Rather, they indicate
that checking a bit set inside oper at or new (or oper at or newf ]) isnot areliable way to determine this information. What we
need is a better way to figure it out.

If you're desperate enough, you might be tempted to descend into the realm of the unportable. For example, you might decide to take
advantage of the fact that on many systems, a program's address space is organized as a linear sequence of addresses, with the
program'’s stack growing down from the top of the address space and the heap rising up from the bottom:
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On systems that organize a program's memory in this way (many do, but many do not), you might think you could use the following
function to determine whether a particular address is on the heap:
/1 incorrect attenpt to deternine whether an address

/1l is on the heap
bool onHeap(const void *address)

{

char onTheSt ack; /!l local stack variable

return address < &onTheSt ack;
}

The thinking behind this function isinteresting. Inside onHeap, onTheSt ack isaloca variable. Assuch, itis, well, it's on the
stack. When onHeap iscalled, its stack frame (i.e., its activation record) will be placed at the top of the program's stack, and because
the stack grows down (toward lower addresses) in this architecture, the address of onThe St ack must be less than the address of any
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other stack-based variable or object. If the parameter addr ess islessthan the location of onTheSt ack, it can't be on the stack, so it
must be on the heap.

Such logicisfine, asfar asit goes, but it doesn't go far enough. The fundamental problem is that there are three places where objects
may be allocated, not two. Y es, the stack and the heap hold objects, but let us not forget about static objects. Static objects are those
that areinitialized only once during a program run. Static objects comprise not only those objects explicitly declared st at i c, but
also objects at global and namespace scope (see Item E47). Such objects have to go somewhere, and that somewhere is neither the

stack nor the heap.
Where they go is system-dependent, but on many of the systems that have the stack and heap grow toward one another, they go below

the heap. The earlier picture of memory organization, while telling the truth and nothing but the truth for many systems, failed to tell
the whole truth for those systems. With static objects added to the picture, it looks like this:
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Suddenly it becomes clear why onHeap won't work, not even on systems where it's purported to: it fails to distinguish between heap
objects and static objects:

voi d al | ocat eSonebj ect s()

{
char *pc = new char; /1 heap object: onHeap(pc)
[l will return true
char c; /'l stack object: onHeap(&c)
/1 will return false
static char sc; /1 static object: onHeap(&sc)
[l will return true
}

Now, you may be desperate for away to tell heap objects from stack objects, and in your desperation you may be willing to strike a
deal with the portability Devil, but are you so desperate that you'll strike a deal that fails to guarantee you the right answers? Surely
not, so | know you'll reject this seductive but unreliable compare-the-addresses trick.

The sad fact is there's not only no portable way to determine whether an object is on the heap, there isn't even a semi-portable way that
works most of the time. If you absolutely, positively have to tell whether an address is on the heap, you're going to have to turn to
unportable, implementation-dependent system calls, and that's that. (It turns out that that may not be that. For details, consult the
"Comments on M27" Web Page.) As such, you're better off trying to redesign your software so you don't need to determine whether an

object ison the heap in the first place.

If you find yourself obsessing over whether an object is on the heap, the likely cause is that you want to know if it's safe to invoke

del et e onit. Often such deletion will take the form of the infamous "del et e t hi s." Knowing whether it's safe to delete a pointer,
however, is not the same as simply knowing whether that pointer points to something on the heap, because not all pointers to things on
the heap can be safely del et ed. Consider again an Asset object that contains a UPNunber object:
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cl ass Asset {
private:
UPNunber val ue;

}
Asset *pa = new Asset;

Clearly * pa (including its member val ue) is on the heap. Equally clearly, it's not safe to invoke del et e on apointer to
pa- >val ue, because no such pointer was ever returned from new.

Asluck would haveit, it's easier to determine whether it's safe to del ete a pointer than to determine whether a pointer points to
something on the heap, because all we need to answer the former question is a collection of addresses that have been returned by
oper at or new. Since we can write oper at or new ourselves (see Items E8-E10), it's easy to construct such a collection. Here's

how we might approach the problem:
voi d *operator newsize_t size)

{
void *p = get Menory(size); /1 call some function to
/! allocate nmenory and
/1 handl e out - of - nenory
/! conditions
add p to the collection of allocated addresses;
return p;
}
voi d operator delete(void *ptr)
{
rel easeMenory(ptr); /[l return nmenory to
Il free store
renove ptr fromthe collection of allocated addresses;
}
bool isSafeToDel ete(const void *address)
{
return whether address is in collection of
al | ocat ed addresses;
}

Thisisabout assimple asit gets. oper at or new adds entries to a collection of allocated addresses, oper at or del et e removes
entries, andi sSaf eToDel et e does alookup in the collection to seeif a particular addressisthere. If theoper at or newand
oper at or del et e functions are at global scope, this should work for all types, even the built-ins.

In practice, three things are likely to dampen our enthusiasm for this design. The first is our extreme reluctance to define anything at
global scope, especially functions with predefined meanings like oper at or newand oper at or del et e. Knowing as we do that
there is but one global scope and but asingle version of oper at or newand oper at or del et e with the "normal" signatures (i.e.,
sets of parameter types) within that scope (see Item E9), the last thing we want to do is seize those function signatures for ourselves.
Doing so would render our software incompatible with any other software that also implements global versions of oper at or new
and oper at or del et e (such as many object-oriented database systems).

Our second consideration is one of efficiency: why burden all heap allocations with the bookkeeping overhead necessary to keep track
of returned addressesif we don't need to?

Our final concern is pedestrian, but important. It turns out to be essentially impossible to implement i sSaf eToDel et e so that it
always works. The difficulty has to do with the fact that objects with multiple or virtual base classes have multiple addresses, so there's
no guarantee that the address passed toi sSaf eToDel et e isthe same as the one returned from oper at or new, even if the object
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in question was allocated on the heap. For details, see Items 24 and 31.

What we'd like is the functionality provided by these functions without the concomitant pollution of the global namespace, the
mandatory overhead, and the correctness problems. Fortunately, C++ gives us exactly what we need in the form of an abstract mixin
base class.

An abstract base classis a base class that can't be instantiated, i.e., one with at least one pure virtual function. A mixin ("mix in") class
isone that provides a single well-defined capability and is designed to be compatible with any other capabilities an inheriting class
might provide (see Item E7). Such classes are nearly always abstract. We can therefore come up with an abstract mixin base class that

offers derived classes the ability to determine whether a pointer was allocated from oper at or new. Here's such aclass:

cl ass HeapTracked { [/ mxin class; keeps track of
public: /]l ptrs returned fromop. new
cl ass M ssi ngAddress{}; /1 exception class; see bel ow

virtual ~HeapTracked() = O;

static void *operator new(size t size);
static void operator delete(void *ptr);

bool isOnHeap() const;

private:
t ypedef const voi d* RawAddress;
static |ist<RawAddress> addresses;

1
Thisclassusesthel i st datastructure that's part of the standard C++ library (see Item E49 and Item 35) to keep track of all pointers

returned from oper at or new. That function allocates memory and adds entriesto the list; oper at or del et e deallocates memory
and removes entries from the list; and i sOnHeap returns whether an object's addressisin the list.

Implementation of the HeapTr acked classis simple, because the global oper at or newand oper at or del et e functions are
called to perform the real memory allocation and deallocation, and thel i st class has functions to make insertion, removal, and
lookup single-statement operations. Here's the full implementation of HeapTr acked:

/1 mandatory definition of static class nenber

| i st <RawAddr ess> HeapTracked: : addr esses;

/1l HeapTracked's destructor is pure virtual to nmake the
/1 class abstract (see |ltem E14). The destructor nust still

/!l be defined, however, so we provide this enpty definition.
HeapTr acked: : ~HeapTracked() {}

void * HeapTracked: : operator new(size_ t size)

{
void *menPtr = ::operator new(size); [// get the nenory
addr esses. push_front (nmenPtr); /] put its address at
/1l the front of the |ist
return nmenPtr;
}
voi d HeapTracked: : operator delete(void *ptr)
{

/1l get an "iterator" that identifies the |ist
/1l entry containing ptr; see Item 35 for details

| i st <RawAddress>::iterator it =
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fi nd(addresses. begin(), addresses.end(), ptr);

if (it !'= addresses.end()) { /1 if an entry was found
addr esses. erase(it); /1l renpove the entry
::operator delete(ptr); /1 deall ocate the nenory
} else { /1 otherw se
t hrow M ssi ngAddr ess(); /1 ptr wasn't allocated by
} /1l op. new, so throw an
} /1 exception

bool HeapTracked: :i sOnHeap() const
{
/1l get a pointer to the beginning of the nenory
/! occupied by *this; see below for details
const void *rawAddress = dynam c_cast <const voi d*>(this);

/1l 1ook up the pointer in the list of addresses
/'l returned by operator new
i st<RawAddress>::iterator it =
fi nd(addresses. begin(), addresses.end(), rawAddress);

return it != addresses. end(); /[l return whether it was
} /1 found

This code is straightforward, though it may not look that way if you are unfamiliar withthel i st class and the other components of
the Standard Template Library. Item 35 explains everything, but the comments in the code above should be sufficient to explain what's

happening in this example.

The only other thing that may confound you is this statement (ini sOnHeap):
const void *rawAddress = dynam c_cast <const voi d*>(this);

I mentioned earlier that writing the global functioni sSaf eToDel et e is complicated by the fact that objects with multiple or virtual
base classes have several addresses. That problem plaguesusini sOnHeap, too, but becausei sOnHeap appliesonly to

HeapTr acked objects, we can exploit a special feature of thedynamni ¢_cast operator (see ltem 2) to eliminate the problem.
Simply put, dynami c_cast ing apointer tovoi d* (or const voi d* orvol ati |l e voi d* or, for those who can't get enough
modifiersin their usual diet, const vol ati | e voi d*) yields a pointer to the beginning of the memory for the object pointed to by
the pointer. But dynani c¢_cast isapplicable only to pointers to objects that have at least one virtual function. Our ill-fated

i sSaf eToDel et e function had to work with any type of pointer, sodynam c_cast wouldn't helpit.i sOnHeap ismore
selective (it tests only pointersto HeapTr acked objects), sodynani ¢_castingt hi s toconst voi d* givesusa pointer to the
beginning of the memory for the current object. That's the pointer that HeapTr acked::oper at or newmust have returned if the
memory for the current object was alocated by HeapTr acked::oper at or newin thefirst place. Provided your compilers support
thedynam c_cast operator, thistechnique is completely portable.

Given this class, even BASIC programmers could add to a class the ability to track pointers to heap alocations. All they'd need to do
is have the class inherit from HeapTr acked. If, for example, we want to be able to determine whether a pointer to an Asset object
points to a heap-based object, we'd modify Asset 's class definition to specify HeapTr acked as abase class:

cl ass Asset: public HeapTracked {
private:
UPNunber val ue;

H

We could then query Asset * pointers asfollows:
voi d i nventoryAsset (const Asset *ap)

{
if (ap->isOnHeap()) {
ap is a heap-based asset —inventory it as such;
}
el se {
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ap i s a non-heap-based asset —record it that way;

}
}

A disadvantage of amixin classlike HeapTr acked isthat it can't be used with the built-in types, because typeslikei nt and char
can't inherit from anything. Still, the most common reason for wanting to use aclass like HeapTr acked isto determine whether it's
okay to "del et e t hi s," and you'll never want to do that with a built-in type because such types have not hi s pointer.

Prohibiting Heap-Based Objects

Thus ends our examination of determining whether an object is on the heap. At the opposite end of the spectrum is preventing objects
from being allocated on the heap. Here the outlook is a bit brighter. There are, as usual, three cases: objects that are directly
instantiated, objects instantiated as base class parts of derived class objects, and objects embedded inside other objects. We'll consider
eachinturn.

Preventing clients from directly instantiating objects on the heap is easy, because such objects are always created by calsto newand
you can make it impossible for clientsto call new. Now, you can't affect the availability of the new operator (that's built into the
language), but you can take advantage of the fact that the new operator always callsoper at or new (see Item 8), and that function is
one you can declare yourself. In particular, it isone you can declare pr i vat e. If, for example, you want to keep clients from creating
UPNunber objects on the heap, you could do it this way:
cl ass UPNunber {
private:
static void *operator new(size_t size);
static void operator delete(void *ptr);

N -
Clients can now do only what they're supposed to be able to do:

UPNunber n1; /1 okay

stati c UPNunber n2; /1 al so okay

UPNunber *p = new UPNunber; /1 error! attenpt to call

[l private operator new

It sufficesto declare oper at or newprivate, but it looks strange to have oper at or newbe private and oper at or del et e be
public, so unless there's a compelling reason to split up the pair, it's best to declare them in the same part of aclass. If you'd like to
prohibit heap-based arrays of UPNunber objects, too, you could declare oper at or new| ] and oper at or del et e[ ] (seeltem

8) private aswell. (The bond between oper at or newand oper at or del et e isstronger than many people think. For information
on ararely-understood aspect of their relationship, turn to the sidebar in my article on counting objects.)

Interestingly, declaring oper at or new private often also prevents UPNurnber objects from being instantiated as base class parts of
heap-based derived class objects. That's because oper at or newand oper at or del et e areinherited, so if these functions aren't
declared public in aderived class, that class inherits the private versions declared in its base(s):

class UPNunber { ... }; /'l as above
cl ass NonNegat i veUPNunber : /1 assume this class
public UPNunmber { /'l declares no operator new
1
NonNegat i veUPNunber nl1; /1 okay
stati c NonNegati veUPNunber n2; /1 al so okay
NonNegat i veUPNunber *p = [l error! attenpt to call
new NonNegat i veUPNunber ; /1 private operator new

If the derived class declares an oper at or newof its own, that function will be called when allocating derived class objects on the
heap, and a different way will have to be found to prevent UPNunber base class parts from winding up there. Similarly, the fact that

file:///C|/mauro/Mec/M.htm (117 of 218) [2001-01-17 10:54:28]


file:///C|/mauro/MAGAZINE/CO_FRAME.HTM#sidebar
file:///C|/mauro/MAGAZINE/CO_FRAME.HTM

More Effective C++ | Book

UPNunber 'soper at or newis private has no effect on attemptsto allocate objects containing UPNunber objects as members:
cl ass Asset {
public:
Asset (int initValue);

private:
UPNunber val ue;
3
Asset *pa = new Asset (100); /1l fine, calls

/1 Asset::operator new or
/1 ::operator new, not
/1 UPNumber: : operator new

For al practical purposes, this brings us back to where we were when we wanted to throw an exception in the UPNurnber constructors
if aUPNunber object was being constructed in memory that wasn't on the heap. Thistime, of course, we want to throw an exception
if the object in question is on the heap. Just as there is no portable way to determine if an address is on the heap, however, thereis no
portable way to determine that it is not on the heap, so we're out of luck. This should be no surprise. After al, if we could tell when an
address is on the heap, we could surely tell when an address is not on the heap. But we can't, so we can't. Oh well.
Back to Item 27: Requiring or prohibiting heap-based objects
Continue to Item 29: Reference counting

I[tem 28: Smart pointers.

Smart pointers are objects that are designed to ook, act, and feel like built-in pointers, but to offer greater functionality. They have a
variety of applications, including resource management (see Items 9, 10, 25, and 31) and the automation of repetitive coding tasks (see

Items 17 and 29).

When you use smart pointersin place of C++'s built-in pointers (i.e., dumb pointers), you gain control over the following aspects of
pointer behavior:

« Construction and destruction. Y ou determine what happens when a smart pointer is created and destroyed. It is common to
give smart pointers a default value of O to avoid the headaches associated with uninitialized pointers. Some smart pointers are
made responsible for deleting the object they point to when the last smart pointer pointing to the object is destroyed. This can go
along way toward eliminating resource leaks.

« Copying and assignment. Y ou control what happens when a smart pointer is copied or isinvolved in an assignment. For some
smart pointer types, the desired behavior isto automatically copy or make an assignment to what is pointed to, i.e., to perform a
deep copy. For others, only the pointer itself should be copied or assigned. For still others, these operations should not be
allowed at all. Regardless of what behavior you consider "right," the use of smart pointersletsyou call the shots.

« Dereferencing. What should happen when a client refers to the object pointed to by a smart pointer? Y ou get to decide. You
could, for example, use smart pointers to help implement the lazy fetching strategy outlined in Item 17.

Smart pointers are generated from templates because, like built-in pointers, they must be strongly typed; the template parameter
specifies the type of object pointed to. Most smart pointer templates look something like this:

t enpl at e<cl ass T> /1l tenmplate for smart
class SmartPtr { /1 pointer objects
public:
SmartPtr(T* real Ptr = 0); /] create a smart ptr to an

/1 obj given a dunb ptr to
/1 it; uninitialized ptrs
/1 default to O (null)
SmartPtr(const SmartPtr& rhs); /1l copy a smart ptr
~Smart Ptr(); /1 destroy a smart ptr

/1 make an assignnent to a smart ptr
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Smart Ptr& operator=(const SmartPtré& rhs);
T* operator->() const; /1 dereference a smart ptr

/!l to get at a nenber of
/1l what it points to

T& operator*() const; /1 dereference a smart ptr
private:
T *poi nt ee; /1l what the smart ptr

};

The copy constructor and assignment operator are both shown public here. For smart pointer classes where copying and assignment
are not allowed, they would typically be declared private (see Item E27). The two dereferencing operators are declared const ,
because dereferencing a pointer doesn't modify it (though it may lead to modification of what the pointer points to). Finally, each
smart pointer-to-T object isimplemented by containing a dumb pointer-to-T within it. It is this dumb pointer that does the actual
pointing.

[/l points to

Before going into the details of smart pointer implementation, it's worth seeing how clients might use smart pointers. Consider a
distributed system in which some objects are local and some are remote. Access to local objects is generally simpler and faster than
access to remote objects, because remote access may require remote procedure calls or some other way of communicating with a
distant machine.

For clients writing application code, the need to handle local and remote objects differently is anuisance. It is more convenient to have
all objects appear to be located in the same place. Smart pointers allow alibrary to offer thisillusion:

t enpl at e<cl ass T> /[l template for smart ptrs
class DBPtr ({ /!l to objects in a
public: /1 distributed DB

DBPtr(T *real Ptr = 0); /]l create a smart ptr to a

/1 DB object given a | ocal
/1 dumb pointer to it

DBPt r ( Dat aBasel D i d); /!l create a smart ptr to a
/1 DB object given its
/1 unique DB identifier

/1l other smart ptr

};”. /1 functions as above
class Tuple { /1 class for database
public: /1 tuples

v0| d di spl ayEdi t D al og(); /1 present a graphical

/1 dialog box allowng a
/1l user to edit the tuple

bool isValid() const; /1 return whether *this
H /1 passes validity check

/1l class tenplate for making log entries whenever a T
/1 object is nodified; see below for details
t enpl at e<cl ass T>
class LogEntry {
public:
LogEntry(const T& obj ect ToBeModi fi ed);
~LogEntry();
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voi d edit Tupl e( DBPt r <Tupl e>& pt)

{
LogEnt ry<Tupl e> entry(*pt); /1 make log entry for this
/1 editing operation; see
/1 below for details
/'l repeatedly display edit dialog until valid val ues
/1 are provided
do {
pt - >di spl ayEdi t Di al og() ;
} while (pt->isvalid() == fal se);
}

Thetuple to be edited inside edi t Tupl e may be physically located on a remote machine, but the programmer writing edi t Tupl e
need not be concerned with such matters; the smart pointer class hides that aspect of the system. Asfar as the programmer is
concerned, all tuples are accessed through objects that, except for how they're declared, act just like run-of-the-mill built-in pointers.

Noticetheuse of aLogEnt ry objectinedi t Tupl e. A more conventional design would have been to surround the call to

di spl ayEdi t Di al og with callsto begin and end the log entry. In the approach shown here, the LogEnt r y's constructor begins
the log entry and its destructor ends the log entry. As Item 9 explains, using an object to begin and end logging is more robust in the
face of exceptions than explicitly calling functions, so you should accustom yourself to using classes like LogEnt r y. Besides, it's
easier to create asingle LogEnt r y object than to add separate calls to start and stop an entry.

Asyou can see, using a smart pointer isn't much different from using the dumb pointer it replaces. That's testimony to the
effectiveness of encapsulation. Clients of smart pointers are supposed to be able to treat them as dumb pointers. Aswe shall see,
sometimes the substitution is more transparent than others.

Construction, Assignment, and Destruction of Smart Pointers

Construction of asmart pointer isusually straightforward: locate an object to point to (typically by using the smart pointer's
constructor arguments), then make the smart pointer's internal dumb pointer point there. If no object can be located, set the internal
pointer to 0 or signal an error (possibly by throwing an exception).

Implementing a smart pointer's copy constructor, assignment operator(s) and destructor is complicated somewhat by the issue of
ownership. If asmart pointer owns the object it pointsto, it is responsible for deleting that object when it (the smart pointer) is
destroyed. This assumes the object pointed to by the smart pointer is dynamically allocated. Such an assumption is common when
working with smart pointers. (For ideas on how to make sure the assumption istrue, see Iltem 27.)

Consider theaut o_pt r template from the standard C++ library. As ltem 9 explains, an aut o_pt r object isasmart pointer that
points to a heap-based object until it (theaut o_pt r) isdestroyed. When that happens, the aut o_pt r 's destructor deletes the
pointed-to object. Theaut o_pt r template might be implemented like this:

t enpl at e<cl ass T>

class auto _ptr {

public:
auto_ptr(T *ptr = 0): pointee(ptr) {}
~auto_ptr() { delete pointee; }

private:
T *poi nt ee;
3
Thisworks fine provided only one aut o_pt r owns an object. But what should happen when an aut o_pt r iscopied or assigned?
aut o_ptr<TreeNode> ptnl(new TreeNode);

aut o_ptr<TreeNode> ptn2 = ptnil; [/l call to copy ctor;
/1 what shoul d happen?

aut o_ptr<TreeNode> ptn3;
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ptn3 = ptn2; /1 call to operator=;
/'l what shoul d happen?

If we just copied the internal dumb pointer, we'd end up with two aut o_pt r s pointing to the same object. This would lead to grief,
because each aut o_pt r would delete what it pointed to when the aut o_pt r was destroyed. That would mean we'd del ete an object
more than once. The results of such double-deletes are undefined (and are frequently disastrous).

An alternative would be to create a new copy of what was pointed to by calling new. That would guarantee we didn't have too many
aut o_pt r spointing to asingle object, but it might engender an unacceptable performance hit for the creation (and later destruction)
of the new object. Furthermore, we wouldn't necessarily know what type of object to create, because an aut o_pt r <T> object need
not point to an object of type T; it might point to an object of atype derived from T. Virtual constructors (see Item 25) can help solve

this prablem, but it seemsinappropriate to require their use in a genera -purpose classlikeaut o_ptr.
The problems would vanish if aut o_pt r prohibited copying and assignment, but a more flexible solution was adopted for the
aut o_pt r classes: object ownership istransferred when an aut o_pt r iscopied or assigned:

t enpl at e<cl ass T>
class auto_ptr {

public:
auto_ptr(auto_ptr<T>& rhs); /'l copy constructor
auto_ptr<T>& /1 assi gnment
operator=(auto_ptr<T>& rhs); /'l operator

3

t enpl at e<cl ass T>
auto_ptr<T>::auto_ptr(auto_ptr<T>& rhs)

{
poi ntee = rhs. point ee; /'l transfer ownership of
/1l *pointee to *this
rhs. poi ntee = 0; /1 rhs no | onger owns
} /1 anyt hing

t enpl at e<cl ass T>
auto_ptr<T>& auto_ptr<T>::operator=(auto_ptr<T>& rhs)

if (this == &rhs) /1 do nothing if this
return *this; /1 object is being assigned
/Il to itself

del et e pointee; /1 delete currently owned
/1 object
poi nt ee = rhs. poi nt ee; /1 transfer ownership of
rhs. poi ntee = 0; /1l *pointee fromrhs to *this

return *this;

}

Notice that the assignment operator must del ete the object it owns before assuming ownership of a new object. If it failed to do this,
the object would never be deleted. Remember, nobody but the aut o_pt r object owns the object theaut o_pt r pointsto.

Because object ownership is transferred when aut o_pt r 's copy constructor is called, passing aut o_pt r sby valueis often avery
bad idea. Here's why:
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/!l this function will often lead to disaster
voi d printTreeNode(ostrean& s, auto_ptr<TreeNode> p)

{ s <<*p; }

int main()

{
aut o_ptr<TreeNode> pt n(new TreeNode) ;

print TreeNode(cout, ptn); /1l pass auto_ptr by val ue

}

When pri nt Tr eeNode's parameter p isinitialized (by calling aut o_pt r 's copy constructor), ownership of the object pointed to
by pt n istransferred to p. When pri nt Tr eeNode finishes executing, p goes out of scope and its destructor deletes what it pointsto
(whichiswhat pt n used to point to). pt n, however, no longer points to anything (its underlying dumb pointer is null), so just about
any attempt to use it after the call to pri nt Tr eeNode will yield undefined behavior. Passing aut o_pt r sby value, then, is
something to be done only if you're sure you want to transfer ownership of an object to a (transient) function parameter. Only rarely
will you want to do this.

This doesn't mean you can't passaut o0_pt r sas parameters, it just means that pass-by-valueis not the way to do it.
Pass-by-reference-to-const is:

/1 this function behaves nuch nore intuitively
voi d printTreeNode(ostrean& s,
const auto_ptr<TreeNode>& p)

{ s <<*p; }

In thisfunction, p isareference, not an object, so no constructor is called to initialize p. When pt n is passed to this version of
pri nt Tr eeNode, it retains ownership of the object it points to, and pt n can safely be used after the call to pri nt Tr eeNode.
Thus, passing aut o_pt r sby reference-to-const avoids the hazards arising from pass-by-value. (For other reasons to prefer
pass-by-reference to pass-by-value, check out [tem E22.)

The notion of transferring ownership from one smart pointer to another during copying and assignment is interesting, but you may
have been at least as interested in the unconventional declarations of the copy constructor and assignment operator. These functions
normally take const parameters, but above they do not. In fact, the code above changes these parameters during the copy or the
assignment. In other words, aut o_pt r objects are modified if they are copied or are the source of an assignment!

Y es, that's exactly what's happening. Isn't it nice that C++ is flexible enough to let you do this? If the language required that copy
constructors and assignment operators take const parameters, you'd probably have to cast away the parameters const ness (see
Item E21) or play other games to implement ownership transferral. Instead, you get to say exactly what you want to say: when an
object is copied or is the source of an assignment, that object is changed. This may not seem intuitive, but it's simple, direct, and, in
this case, accurate.

If you find this examination of aut o_pt r member functionsinteresting, you may wish to see a complete implementation. Y ou'll find
one on pages 291-294, where you'll also see that the aut o_pt r templatein the standard C++ library has copy constructors and
assignment operators that are more flexible than those described here. In the standard aut o_pt r template, those functions are
member function templates, not just member functions. (Member function templates are described later in this Item. Y ou can aso read
about them in Item E25.)

A smart pointer's destructor often looks like this:

t enpl at e<cl ass T>
SmartPtr<T>:: ~Smart Ptr ()

if (*this owns *pointee) {
del ete pointee;
}
}
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Sometimes there isno need for thetest. Anaut o_pt r always ownswhat it pointsto, for example. At other times the test is a bit
more complicated. A smart pointer that employs reference counting (see Item 29) must adjust a reference count before determining

whether it has the right to delete what it points to. Of course, some smart pointers are like dumb pointers: they have no effect on the
object they point to when they themselves are destroyed.

Implementing the Dereferencing Operators

Let us now turn our attention to the very heart of smart pointers, the oper at or * and oper at or - > functions. The former returns
the object pointed to. Conceptually, thisis simple:

t enpl at e<cl ass T>

T& Smart Pt r<T>::operator*() const

{

perform"snart pointer" processing;

return *pointee;

}

First the function does whatever processing is needed to initialize or otherwise make poi nt ee valid. For example, if lazy fetching is
being used (see Item 17), the function may have to conjure up a new object for poi nt ee to point to. Once poi nt ee isvalid, the
oper at or * function just returns a reference to the pointed-to object.

Note that the return type is areference. It would be disastrous to return an object instead, though compilers will let you doit. Bear in
mind that poi nt ee need not point to an object of type T; it may point to an object of aclassderived from T. If that is the case and
your oper at or * function returnsa T object instead of areference to the actual derived class object, your function will return an
object of the wrong type! (Thisisthe dicing problem. See Item E22 and Item 13.) Virtual functions invoked on the object returned
from your star-crossed oper at or * will not invoke the function corresponding to the dynamic type of the pointed-to object. In
essence, your smart pointer will not properly support virtual functions, and how smart is a pointer like that? Besides, returning a
reference is more efficient anyway, because there is no need to construct atemporary object (see Item 19). Thisis one of those happy
occasions when correctness and efficiency go hand in hand.

If you're the kind who likes to worry, you may wonder what you should do if somebody invokes oper at or * on anull smart pointer,
i.e., one whose embedded dumb pointer is null. Relax. Y ou can do anything you want. The result of dereferencing anull pointer is
undefined, so thereisno "wrong" behavior. Wannathrow an exception? Go ahead, throw it. Wannacall abor t (possibly by having
anassert cal fal)?Fine, cal it. Wannawalk through memory setting every byte to your birth date modulo 2567 That's okay, too.
It's not nice, but as far as the language is concerned, you are completely unfettered.

The story with oper at or - > issimilar to that for oper at or *, but before examining oper at or - >, let usremind ourselves of the
unusual meaning of acall to this function. Consider again the edi t Tupl e function that uses a smart pointer-to-Tupl e object:
voi d edit Tupl e( DBPt r <Tupl e>& pt)

{
LogEnt ry<Tupl e> entry(*pt);

do {
pt - >di spl ayEdi t Di al og() ;
} while (pt->isvalid() == fal se);
}
The statement

pt - >di spl ayEdi t Di al og();

isinterpreted by compilers as:
(pt.operator->())->di splayEdi tDi al og();
That means that whatever oper at or - > returns, it must be legal to apply the member-selection operator (- >) to it. There are thus

only two thingsoper at or - > can return: adumb pointer to an object or another smart pointer object. Most of the time, you'll want to
return an ordinary dumb pointer. In those cases, you implement oper at or - > asfollows:

t enpl at e<cl ass T>
T* Smart Ptr<T>::operator->() const

{
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perform"smart pointer" processing;

return pointee;

}

Thiswill work fine. Because this function returns a pointer, virtual function callsviaoper at or - > will behave the way they're
supposed to.

For many applications, thisis al you need to know about smart pointers. The reference-counting code of Item 29, for example, draws

on no more functionality than we've discussed here. If you want to push your smart pointers further, however, you must know more
about dumb pointer behavior and how smart pointers can and cannot emulate it. If your motto is "Most people stop at the Z — but not
me!", the material that followsisfor you.

Testing Smart Pointers for Nullness

With the functions we have discussed so far, we can create, destroy, copy, assign, and dereference smart pointers. One of the things we
cannot do, however, isfind out if asmart pointer is null:

Smart Pt r <Tr eeNode> ptn;

if (ptn ==20) ... Il error!
if (ptn) ... /'l error!
if (!'ptn) ... Il error!

Thisis aserious limitation.

It would be easy toadd ani sNul | member function to our smart pointer classes, but that wouldn't address the problem that smart
pointers don't act like dumb pointers when testing for nullness. A different approach isto provide an implicit conversion operator that
allows the tests above to compile. The conversion traditionally employed for this purposeisto voi d*:

t enpl at e<cl ass T>
class SmartPtr {

public:
operator void*(); /[l returns O if the snart
[l ptr is null, nonzero
}; /] otherw se
Smart Pt r <Tr eeNode> pt n;
if (ptn == 0) ... /1 now fine
if (ptn) ... /1 also fine
if ('ptn) ... /1 fine

Thisis similar to a conversion provided by the iostream classes, and it explains why it's possible to write code like this:
ifstreaminputFile("datafile.dat");

if (inputFile) ... /]l test to see if inputFile
/1l was successfully
/! opened

Like all type conversion functions, this one has the drawback of letting function calls succeed that most programmers would expect to
fail (seeltem 5). In particular, it allows comparisons of smart pointers of completely different types:

Smart Pt r <Appl e> pa;
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Smart Pt r<Or ange> po;

if (pa == po) ... /1 this conpil es!

Evenif thereisno oper at or == taking a Snar t Pt r <Appl e>and aSnart Pt r <Or ange>, this compiles, because both smart
pointers can be implicitly converted into voi d* pointers, and thereis a built-in comparison function for built-in pointers. This kind of
behavior makes implicit conversion functions dangerous. (Again, see Item 5, and keep seeing it over and over until you can seeitin
the dark.)

There are variations on the conversion-to-voi d* motif. Some designers advocate conversion to const voi d*, others embrace
conversion to bool . Neither of these variations eliminates the problem of allowing mixed-type comparisons.

Thereisamiddle ground that allows you to offer a reasonable syntactic form for testing for nullness while minimizing the chances of
accidentally comparing smart pointers of different types. It isto overload oper at or! for your smart pointer classes so that
operator! returnst r ue if and only if the smart pointer on which it'sinvoked is null:

t enpl at e<cl ass T>
class SmartPtr {
public:

bool operator! () const; /! returns true if and only
/[l if the smart ptr is null

1
Thisletsyour clients program like this,
Smart Pt r <Tr eeNode> ptn;

if (!I'ptn) { Il fine
[l ptnis null
}
el se {
/1 ptn is not null
}
but not like this:
if (ptn ==0) ... /1 still an error
if (ptn) ... /1 also an error

The only risk for mixed-type comparisons is statements such as these:

Smart Pt r <Appl e> pa;
Smart Pt r<Orange> po;

if (!pa ==1!po) ... /1 alas, this conpiles

Fortunately, programmers don't write code like this very often. Interestingly, iostream library implementations provide an
oper at or! inaddition to theimplicit conversionto voi d*, but these two functions typically test for dightly different stream states.
(In the C++ library standard (see Item E49 and Item 35), the implicit conversionto voi d* has been replaced by an implicit

conversion to bool , and oper at or bool awaysreturns the negation of oper at or ! .)

Converting Smart Pointers to Dumb Pointers

Sometimes you'd like to add smart pointers to an application or library that already uses dumb pointers. For example, your distributed
database system may not originally have been distributed, so you may have some old library functions that aren't designed to use smart
pointers:
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class Tuple { ... }; /1 as before

void normalize(Tuple *pt); /1 put *pt into canonical
/! form note use of dunb
/1 pointer

Consider what will happen if you try to call nor mal i ze with asmart pointer-to-Tupl e:
DBPt r <Tupl e> pt;

normal i ze(pt); /1 error!
The call will fail to compile, because there is no way to convert aDBPt r <Tupl e>toaTupl e*. You can make it work by doing
this,

normal i ze( & pt); /1 gross, but |egal
but I hope you'll agree thisis repugnant.

The call can be made to succeed by adding to the smart pointer-to-T template an implicit conversion operator to a dumb pointer-to-T:

t enpl at e<cl ass T> [l as before
class DBPtr {
public:

operator T*() { return pointee; }

—

DBPt r <Tupl e> pt;

normal i ze(pt); /1 this now works

Addition of this function also eliminates the problem of testing for nullness:

if (pt ==0) ... /[l fine, converts pt to a
[l Tupl e*

if (pt) ... /'l ditto

if ('pt) ... /1l ditto (reprise)

However, there is a dark side to such conversion functions. (There almost alwaysis. Have you been seeing Item 5?) They make it easy
for clientsto program directly with dumb pointers, thus bypassing the smarts your pointer-like objects are designed to provide:

voi d processTupl e( DBPt r <Tupl e>& pt)

{
Tupl e *rawTupl ePtr = pt; /1l converts DBPtr<Tuple> to
[l Tupl e*

use rawTuplePtr to nodify the tuple;

}

Usually, the "smart" behavior provided by a smart pointer is an essential component of your design, so alowing clients to use dumb
pointers typically leadsto disaster. For example, if DBPt r implements the reference-counting strategy of Item 29, allowing clientsto

manipulate dumb pointers directly will almost certainly lead to bookkeeping errors that corrupt the reference-counting data structures.

Even if you provide an implicit conversion operator to go from a smart pointer to the dumb pointer it's built on, your smart pointer will
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never be truly interchangeable with the dumb pointer. That's because the conversion from a smart pointer to a dumb pointer isa
user-defined conversion, and compilers are forbidden from applying more than one such conversion at atime. For example, suppose
you have aclass representing all the clients who have accessed a particular tuple:

cl ass Tupl eAccessors {

public:

Tupl eAccessors(const Tuple *pt); /1l pt identifies the

C /1l tuple whose accessors
}; /! we care about

Asusua, Tupl eAccessor s' single-argument constructor also acts as a type-conversion operator from Tupl e* to
Tupl eAccessor s (seeltem 5). Now consider afunction for merging the information in two Tupl eAccessor s objects:

Tupl eAccessors nerge(const Tupl eAccessors& tal,
const Tupl eAccessorsé& ta2);

Because a Tupl e* may beimplicitly converted to aTupl eAccessor s, caling ner ge with two dumb Tupl e* pointersisfine:
Tuple *ptl, *pt2;

merge(ptl, pt2); /1 fine, both pointers are converted
/1 to Tupl eAccessors objects

The corresponding call with smart DBPt r <Tupl e> pointers, however, failsto compile:
DBPt r <Tupl e> pt1l, pt2;

merge(ptl, pt2); /1l error! No way to convert ptl and
/1l pt2 to Tupl eAccessors objects

That's because a conversion from DBPt r <Tupl e>to Tupl eAccessor s callsfor two user-defined conversions (one from
DBPt r <Tupl e>to Tupl e* and onefrom Tupl e* to Tupl eAccessor s), and such sequences of conversions are prohibited by
the language.

Smart pointer classes that provide an implicit conversion to a dumb pointer open the door to a particularly nasty bug. Consider this
code:

DBPt r <Tupl e> pt = new Tupl e;

del ete pt;

This should not compile. After all, pt isnot apointer, it's an object, and you can't delete an object. Only pointers can be deleted,
right?

Right. But remember from Item 5 that compilers use implicit type conversions to make function calls succeed whenever they can, and
recall from Item 8 that use of the del et e operator leadsto callsto adestructor and to oper at or del et e, both of which are

functions. Compilers want these function callsto succeed, so inthe del et e statement above, they implicitly convert pt to a
Tupl e*, then they delete that. Thiswill almost certainly break your program.

If pt ownsthe object it pointsto, that object is now deleted twice, once at the point where del et e iscalled, a second time when pt 's
destructor isinvoked. If pt doesn't own the abject, somebody el se does. That somebody may be the person who deleted pt , in which
case al iswell. If, however, the owner of the object pointed to by pt is not the person who deleted pt , we can expect the rightful
owner to delete that object again later. The first and last of these scenarios |eads to an object being deleted twice, and deleting an
object more than once yields undefined behavior.

This bug is especially pernicious because the whole idea behind smart pointersisto make them look and feel as much like dumb
pointers as possible. The closer you get to this ideal, the more likely your clients are to forget they are using smart pointers. If they do,
who can blame them if they continue to think that in order to avoid resource leaks, they must call del et e if they called new?
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The bottom line is simple: don't provide implicit conversion operators to dumb pointers unless there is a compelling reason to do so.
Smart Pointers and Inheritance-Based Type Conversions

Suppose we have a public inheritance hierarchy modeling consumer products for storing music:

(e I
h._fT_uf_:) o d_,r" il:asselle \-_._ co >

MusicProduct

MusicProduct

cl ass Musi cProduct {

public:
Musi cProduct (const string& title);
virtual void play() const = 0;
virtual void displayTitle() const = O;

3
cl ass Cassette: public MisicProduct {
public:

Cassette(const string& title);

virtual void play() const;

virtual void displayTitle() const;
3
class CD: public MisicProduct {
public:

CD(const string& title);

virtual void play() const;

virtual void displayTitle() const;
3

Further suppose we have a function that, given aMusi cPr oduct object, displays thetitle of the product and then playsit:
voi d di spl ayAndPl ay(const Misi cProduct* pnp, int nunfTines)
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{
for (int i = 1; i <= nunTines; ++i) {
pnp->di splayTitle();
pnp->play();
}
}

Such afunction might be used like this:

Cassette *funMisi c = new Cassette("Al apal ooza");

CD *ni ght mareMusi ¢ = new CD("Disco Hits of the 70s");
di spl ayAndPl ay(funMusi c, 10);

di spl ayAndPl ay( ni ght mar eMusi c, 0);

There are no surprises here, but ook what happens if we replace the dumb pointers with their allegedly smart counterparts.

voi d di spl ayAndPl ay(const Snart Ptr<Misi cProduct >& pnp,
i nt nunili mes) ;

Smart Ptr<Cassette> funMisi c(new Cassette("Al apal ooza"));
Smart Pt r <CD> ni ght mar eMusi c(new CD("Di sco Hits of the 70s"));

di spl ayAndPl ay(funMusic, 10); /!l error!
di spl ayAndPI ay( ni ght mar eMusi ¢, 0); /1 error!

If smart pointers are so brainy, why won't these compile?

They won't compile because there is no conversion fromaSmart Pt r <CD> or aSmart Pt r <Cassette>toa

Smart Pt r <Musi cProduct >. Asfar as compilers are concerned, these are three separate classes — they have no relationship to
one another. Why should compilers think otherwise? After al, it's not like Srrar t Pt r <CD> or Smar t Pt r <Casset t e> inherits
from Smart Pt r <Musi cPr oduct >. With no inheritance rel ationship between these classes, we can hardly expect compilersto run
around converting objects of one type to objects of other types.

Fortunately, there is away to get around this limitation, and the idea (if not the practice) is smple: give each smart pointer class an
implicit type conversion operator (see Item 5) for each smart pointer class to which it should be implicitly convertible. For example, in

the music hierarchy, you'd add an oper at or Snart Pt r <Musi cPr oduct > to the smart pointer classesfor Casset t e and CD:

class Smart Ptr<Cassette> {
public:
operator Smart Ptr<Misi cProduct >()
{ return Smart Ptr<Misi cProduct>(pointee); }

private:
Cassette *pointee;

};

class Smart Ptr<CD> {
public:
operator Smart Ptr<Misi cProduct >()
{ return Smart Ptr<Misi cProduct>(pointee); }

private:
CD *poi nt ee;
1

The drawbacks to this approach are twofold. First, you must manually specialize the Smar t Pt r class instantiations so you can add
the necessary implicit type conversion operators, but that pretty much defeats the purpose of templates. Second, you may have to add
many such conversion operators, because your pointed-to object may be deep in an inheritance hierarchy, and you must provide a
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conversion operator for each base class from which that object directly or indirectly inherits. (If you think you can get around this by
providing only an implicit type conversion operator for each direct base class, think again. Because compilers are prohibited from
employing more than one user-defined type conversion function at atime, they can't convert a smart pointer-to-T to a smart
pointer-to-indirect-base-class-of-T unless they can do it in asingle step.)

It would be quite the time-saver if you could somehow get compilersto write all these implicit type conversion functions for you.
Thanksto a recent language extension, you can. The extension in question is the ability to declare (nonvirtual) member function
templates (usually just called member templates), and you use it to generate smart pointer conversion functions like this:

t enpl at e<cl ass T> /'l tenplate class for smart
class SmartPtr { /'l pointers-to-T objects
public:

SmartPtr(T* real Ptr = 0);

T* operator->() const;
T& operator*() const;

t enpl at e<cl ass newlype> /1l tenplate function for
operator SmartPtr<newType>() /1 inplicit conversion ops.
{

return Smart Ptr<newType>(poi nt ee);
}

-

Now hold on to your headlights, thisisn't magic — but it's close. It works as follows. (I'll give a specific example in amoment, so
don't despair if the remainder of this paragraph reads like so much gobbledygook. After you've seen the example, it'll make more
sense, | promise.) Suppose acompiler has a smart pointer-to-T object, and it's faced with the need to convert that object into a smart
pointer-to-base-class-of -T. The compiler checks the class definition for Smar t Pt r <T> to seeif the requisite conversion operator is
declared, but it is not. (It can't be: no conversion operators are declared in the template above.) The compiler then checksto seeif
there's a member function template it can instantiate that would let it perform the conversion it's looking for. It finds such atemplate
(the one taking the formal type parameter newTy pe), so it instantiates the template with newTy pe bound to the base class of T that's
the target of the conversion. At that point, the only question is whether the code for the instantiated member function will compile. In
order for it to compile, it must be legal to pass the (dumb) pointer poi nt ee to the constructor for the smart pointer-to-base-of-T.
poi nt ee isof type T, soitiscertainly legal to convert it into a pointer to its (public or protected) base classes. Hence, the code for
the type conversion operator will compile, and the implicit conversion from smart pointer-to-T to smart pointer-to-base-of-T will
succeed.

An example will help. Let usreturn to the music hierarchy of CDs, cassettes, and music products. We saw earlier that the following
code wouldn't compile, because there was no way for compilers to convert the smart pointers to CDs or cassettes into smart pointers to
music products:
voi d di spl ayAndPl ay(const Snart Ptr<Misi cProduct >& pnp,
i nt howvany) ;

Smart Ptr<Cassette> funMisi c(new Cassette("Al apal ooza"));
Smart Pt r <CD> ni ght mar eMusi c(new CD("Di sco Hits of the 70s"));

di spl ayAndPl ay(funMisic, 10); /'l used to be an error
di spl ayAndPI ay( ni ght nar eMusi c, 0); /1 used to be an error

With the revised smart pointer class containing the member function template for implicit type conversion operators, this code will
succeed. To seewhy, look at thiscall:

di spl ayAndPl ay(funMusi c, 10);

The abject f unMusi ¢ isof type Smar t Pt r <Casset t e>. Thefunctiondi spl ayAndPI ay expectsa

Smart Pt r <Musi cPr oduct > object. Compilers detect the type mismatch and seek away to convert f unMusi ¢ into a

Smar t Pt r <Musi cPr oduct > object. They look for a single-argument constructor (see ltem 5) in the

Smart Pt r <Musi cPr oduct > classthat takesa Smar t Pt r <Casset t e>, but they find none. They look for an implicit type
conversion operator inthe Smar t Pt r <Casset t e> classthat yieldsaSnmart Pt r <Musi cPr oduct > class, but that search also
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fails. They then ook for a member function template they can instantiate to yield one of these functions. They discover that the
templateinside Smar t Pt r <Casset t e>, when instantiated with newTy pe bound to Musi cPr oduct , generates the necessary
function. They instantiate the function, yielding the following code:

Smart Ptr<Cassette>:: operator SmartPtr<Misi cProduct >()

{

}

Will this compile? For all intents and purposes, nothing is happening here except the calling of the Smar t Pt r <Musi cPr oduct >
constructor with poi nt ee asits argument, so the real question is whether one can construct aSnart Pt r <Musi cPr oduct > object
withaCasset t e* pointer. The Smar t Pt r <Musi cPr oduct > constructor expectsaMusi cPr oduct * pointer, but now we're on
the familiar ground of conversions between dumb pointer types, and it's clear that Casset t e* can be passed in wherea

Musi cProduct * isexpected. The construction of the Srmar t Pt r <Musi cPr oduct > istherefore successful, and the conversion of
the Smart Pt r <Cassett e>to Smart Pt r <Musi cPr oduct > isequally successful. Voilal Implicit conversion of smart pointer
types. What could be ssimpler?

return Smart Ptr<Misi cProduct >(poi ntee);

Furthermore, what could be more powerful ? Don't be misled by this example into assuming that this works only for pointer
conversions up an inheritance hierarchy. The method shown succeeds for any legal implicit conversion between pointer types. If
you've got a dumb pointer type T1* and another dumb pointer type T2* , you can implicitly convert a smart pointer-to-T1 to a smart
pointer-to-T2 if and only if you can implicitly convert aT1* toaT2*.

This technique gives you exactly the behavior you want — almost. Suppose we augment our Musi cPr oduct hierarchy with anew
class, CasSi ngl e, for representing cassette singles. The revised hierarchy looks like this:

MusicProduct

MusicProduct

P ~,
TP, Gs@> @
- CasSingle

MusicProduct MusicProduct
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MusicProduct

Now consider this code;

t enpl at e<cl ass T> /1l as above, including nenber tem
class SmartPtr { ... }; /! plate for conversion operators

voi d di spl ayAndPl ay(const Snart Ptr<Misi cProduct >& pnp,
i nt howMany) ;

voi d di spl ayAndPl ay(const SnhartPtr<Cassette>& pc,
i nt howvany) ;

Smart Pt r<CasSi ngl e> dunbMusi c(new CasSi ngl e("Achy Breaky Heart"));

di spl ayAndPl ay(dunbMusic, 1); /!l error!

In thisexample, di spl ayAndPI ay isoverloaded, with one function taking a Smmar t Pt r <Musi cPr oduct > object and the other
taking aSmart Pt r <Casset t e> object. When weinvokedi spl ayAndPl ay withaSmart Pt r <CasSi ngl e>, we expect the
Smart Pt r <Casset t e> function to be chosen, because CasSi ngl e inheritsdirectly from Casset t e and only indirectly from
Musi cProduct . Certainly that's how it would work with dumb pointers. Alas, our smart pointers aren't that smart. They employ
member functions as conversion operators, and as far as C++ compilers are concerned, all callsto conversion functions are equally
good. Asaresult, the call todi spl ayAndPI ay is ambiguous, because the conversion from Smart Pt r <CasSi ngl e>to

Smar t Pt r <Casset t e> isno better than the conversion to Smar t Pt r <Musi cPr oduct >.

Implementing smart pointer conversions through member templates has two additional drawbacks. First, support for member
templatesisrare, so thistechnique is currently anything but portable. In the future, that will change, but nobody knows just how far in
the future that will be. Second, the mechanics of why this works are far from transparent, relying as they do on a detailed
understanding of argument-matching rules for function calls, implicit type conversion functions, implicit instantiation of template
functions, and the existence of member function templates. Pity the poor programmer who has never seen thistrick before and isthen
asked to maintain or enhance code that relies on it. The technique is clever, that's for sure, but too much cleverness can be a dangerous
thing.

Let's stop beating around the bush. What we really want to know is how we can make smart pointer classes behave just like dumb
pointers for purposes of inheritance-based type conversions. The answer is simple: we can't. As Daniel Edelson has noted, smart
pointers are smart, but they're not pointers. The best we can do is to use member templates to generate conversion functions, then use
casts (see Item 2) in those cases where ambiguity results. Thisisn't a perfect state of affairs, but it's pretty good, and having to cast

away ambiguity in afew casesisasmall priceto pay for the sophisticated functionality smart pointers can provide.

Smart Pointers and const

Recall that for dumb pointers, const can refer to the thing pointed to, to the pointer itself, or both (see Iltem E21):
CD goodCD( " Fl ood");

const CD *p; /1l p is a non-const pointer
/1 to a const CD object
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CD * const p = &goodCD; /[l pis a const pointer to
/1 a non-const CD object;
/1 because p is const, it
/1 must be initialized

const CD * const p = &goodCD; /!l pis a const pointer to
/1 a const CD object

Naturally, we'd like to have the same flexibility with smart pointers. Unfortunately, there's only one place to put the const , and there
it applies to the pointer, not to the object pointed to:

const SmartPtr<CD> p = /[l pis a const smart ptr
&goodCD; /1 to a non-const CD object
This seems simple enough to remedy — just create a smart pointer toaconst CD:
Smart Ptr<const CD> p = /1l pis a non-const snart ptr
&goodCD; /'l to a const CD object

Now we can create the four combinations of const and non-const objects and pointers we seek:

Smart Pt r<CD> p; /'l non-const object,
/'l non-const pointer

Smart Pt r<const CD> p; /'l const object,
/1 non-const pointer

const SmartPtr<CD> p = &goodCD; /'l non-const object,
/] const pointer

const SmartPtr<const CD> p = &goodCD; /'l const object,
/1l const pointer

Alas, this ointment has afly init. Using dumb pointers, we can initialize const pointers with non-const pointersand we can
initialize pointersto const objects with pointersto non-const s; the rules for assignments are analogous. For example:

CD *pCD = new CD("Fanous Moyvi e Thenes");

const CD * pConst CD = pCD; /1l fine

But look what happens if we try the same thing with smart pointers:
Smart Pt r<CD> pCD = new CD(" Fanous Mvi e Thenes");

Smart Pt r<const CD> pConst CD = pCD, Il fine?

Smart Pt r <CD> and Smart Pt r <const CD> are completely different types. Asfar as your compilers know, they are unrelated, so
they have no reason to believe they are assignment-compatible. In what must be an old story by now, the only way these two types
will be considered assignment-compatibleisif you've provided a function to convert objects of type Srrar t Pt r <CD> to objects of
type Smar t Pt r <const CD>. If you've got a compiler that supports member templates, you can use the technique shown above for
automatically generating the implicit type conversion operators you need. (I remarked earlier that the technique worked anytime the
corresponding conversion for dumb pointers would work, and | wasn't kidding. Conversionsinvolving const are no exception.) If
you don't have such a compiler, you have to jump through one more hoop.

Conversionsinvolving const are aone-way street: it's safe to go from non-const to const , but it's not safeto go from const to
non-const . Furthermore, anything you can do with aconst pointer you can do with anon-const pointer, but with non-const
pointers you can do other things, too (for example, assignment). Similarly, anything you can do with a pointer-to-const islegal for a
pointer-to-non-const , but you can do some things (such as assignment) with pointers-to-non-const sthat you can't do with
pointers-to-const s.

These rules sound like the rules for public inheritance (see Item E35). Y ou can convert from a derived class object to a base class

object, but not vice versa, and you can do anything to a derived class object you can do to a base class abject, but you can typically do
additional things to a derived class object, as well. We can take advantage of this similarity when implementing smart pointers by
having each smart pointer-to-T class publicly inherit from a corresponding smart pointer-to-const -T class:
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Smart
pointer-to-const-T

Smart
pointer-to-const-T

Smart

Smart pointer-io-const-T

pointer-to-const=T

Sman
pointar-i0-non-const=T

Smart
pointer-to-non-const=-T

Smart
po intér-to-non-const=T

==

Smart
pointer-to-non-const-T

Smart Smart
pointer-to-const-T pointer-to-const-T

Smart Smart
pointer-to-non-const-T pointer-to-non-const-T

t enpl at e<cl ass T> /!l smart pointers to const
class Smart PtrToConst { /1 objects

/1 the usual smart pointer
/] menber functions

pr ot ect ed:
uni on {
const T* const Poi nt ee; /1 for SmartPtrToConst access
T* poi nt ee; /1 for SmartPtr access
1
3
t enpl at e<cl ass T> /1l smart pointers to
class SmartPtr: /!l non-const objects

public SmartPtrToConst <T> {

.

With this design, the smart pointer-to-non-const -T object needs to contain a dumb pointer-to-non-const -T, and the smart
pointer-to-const -T needs to contain a dumb pointer-to-const -T. The naive way to handle this would be to put a dumb
pointer-to-const -T in the base class and a dumb pointer-to-non-const -T in the derived class. That would be wasteful, however,
because Srar t Pt r objects would contain two dumb pointers: the one they inherited from Smar t Pt r ToConst and the onein
Smart Pt r itself.

/! no data menbers

This problem is resolved by employing that old battle axe of the C world, a union, which can be as useful in C++ asitisin C. The
union is protected, so both classes have access to it, and it contains both of the necessary dumb pointer types.
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Smar t Pt r ToConst <T> objects usethe const Poi nt ee pointer, Smar t Pt r <T> objects use the poi nt ee pointer. We therefore
get the advantages of two different pointers without having to alocate space for more than one. (See Item E10 for another example of

this.) Such isthe beauty of aunion. Of course, the member functions of the two classes must constrain themselvesto using only the
appropriate pointer, and you'll get no help from compilersin enforcing that constraint. Such isthe risk of aunion.

With this new design, we get the behavior we want:
Smart Pt r<CD> pCD = new CD("Fanous Mvi e Thenes");

Smart Pt r ToConst <CD> pConst CD = pCD; /1 fine
Evauation

That wraps up the subject of smart pointers, but before we leave the topic, we should ask this question: are they worth the trouble,
especially if your compilers lack support for member function templates?

Often they are. The reference-counting code of I1tem 29, for example, is greatly ssimplified by using smart pointers. Furthermore, as
that example demonstrates, some uses of smart pointers are sufficiently limited in scope that things like testing for nullness,
conversion to dumb pointers, inheritance-based conversions, and support for pointers-to-const sareirrelevant. At the sametime,
smart pointers can be tricky to implement, understand, and maintain. Debugging code using smart pointersis more difficult than
debugging code using dumb pointers. Try as you may, you will never succeed in designing a general-purpose smart pointer that can
seamlessly replace its dumb pointer counterpart.

Smart pointers nevertheless make it possible to achieve effectsin your code that would otherwise be difficult to implement. Smart
pointers should be used judiciously, but every C++ programmer will find them useful at one time or another.

Back to Item 28: Smart pointers
Continue to Item 30: Proxy classes

Item 29: Reference counting.

Reference counting is a technique that allows multiple objects with the same value to share a single representation of that value. There
are two common moativations for the technique. Thefirst isto simplify the bookkeeping surrounding heap objects. Once an object is
allocated by calling new, it's crucial to keep track of who owns that object, because the owner — and only the owner — isresponsible
for calling del et e onit. But ownership can be transferred from object to object as a program runs (by passing pointers as
parameters, for example), so keeping track of an object's ownership is hard work. Classes likeaut o_pt r (seeltem 9) can help with
thistask, but experience has shown that most programs still fail to get it right. Reference counting eliminates the burden of tracking
object ownership, because when an object employs reference counting, it owns itself. When nobody isusing it any longer, it destroys
itself automatically. Thus, reference counting constitutes a simple form of garbage collection.

The second motivation for reference counting is simple common sense. If many objects have the same valug, it's silly to store that
value more than once. Instead, it's better to let all the objects with that value share its representation. Doing so not only saves memory,
it also leads to faster-running programs, because there's no need to construct and destruct redundant copies of the same object value.

Like most smple ideas, this one hovers above a sea of interesting details. God may or may not be in the details, but successful
implementations of reference counting certainly are. Before delving into details, however, et us master basics. A good way to beginis
by seeing how we might come to have many objects with the same value in the first place. Here's one way:

class String { /! the standard string type may
public: /1l enploy the techniques in this
/1l Item but that is not required

String(const char *value = "");

String& operator=(const String& rhs);

private:
char *dat a;

}1
String a, b, ¢, d, e;

a=b=c=d=¢e ="Hell o";
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It should be apparent that objects a through e all have the same value, namely " Hel | 0" . How that value is represented depends on
how the St r i ng classisimplemented, but acommon implementation would have each St r i ng object carry its own copy of the
value. For example, St ri ng's assignment operator might be implemented like this:

String& String::operator=(const String& rhs)
if (this == &hs) return *this; /1l see ltem E17

delete [] data;
data = new char[strlen(rhs.data) + 1];
strcpy(data, rhs.data);

return *this; /] see ltem E15

}

Given thisimplementation, we can envision the five objects and their values as follows:

o= o =S E 0w
o—img © O

.‘—F ello (:)—." Hell

e ol @—D Hello — @—’ Hello
@—» Hello ®—> Hello

: = ®—. Hello @—h Hello

Hello

(2)—={ Hello
@_’ — (:)—I- Hello
@_._ - (:)—I- Hello
(@)—={ Hello
@_’ - (:)—I- Hello
(c)—= Hello O -

The redundancy in this approach is clear. In an ideal world, we'd like to change the picture to ook like this;
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o)

.

@@OE®

Hello

@E@@®®

Hello

@@@E®

Here only one copy of thevalue" Hel | 0" isstored, and al the St r i ng objects with that value share its representation.

In practice, it isn't possible to achieve this ideal, because we need to keep track of how many objects are sharing avalue. If object a
aboveisassigned adifferent valuefrom " Hel | 0", we can't destroy the value " Hel | 0", because four other objects still need it. On
the other hand, if only a single object had thevalue " Hel | 0" and that object went out of scope, no object would have that value and

we'd have to destroy the value to avoid aresource |eak.

The need to store information on the number of objects currently sharing — referring to — avalue means our ideal picture must be

Hello

modified somewhat to take into account the existence of areference count:
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(5) Hello

Hello

(5) Hello

(Some people call this number a use count, but | am not one of them. C++ has enough idiosyncrasies of its own; the last thing it needs
isterminological factionalism.)

Implementing Reference Counting

Creating areference-counted St r i ng classisn't difficult, but it does require attention to detail, so we'll walk through the
implementation of the most common member functions of such a class. Before we do that, however, it'simportant to recognize that we
need a place to store the reference count for each St ri ng value. That place cannot beina St r i ng object, because we need one
reference count per string value, not one reference count per string object. That implies a coupling between values and reference
counts, so we'll create a class to store reference counts and the values they track. We'll call thisclass St r i ngVal ue, and becauseits
only raison d'éreisto helpimplement the St r i ng class, well nest it inside St r i ng's private section. Furthermore, it will be
convenient to give al the member functions of St ri ng full accesstothe St ri ngVal ue data structure, so we'll declare

StringVal uetobeastruct. Thisisatrick worth knowing: nesting a struct in the private part of aclassis aconvenient way to
give access to the struct to all the members of the class, but to deny access to everybody else (except, of course, friends of the class).

Our basic design looks like this:
class String {

public:
/! the usual String nenber
/1 functions go here
private:
struct Stringvalue { ... }; /1 holds a reference count
/1 and a string val ue
StringVal ue *val ue; /1 value of this String
3

We could give this class adifferent name (RCSt r i ng, perhaps) to emphasize that it's implemented using reference counting, but the
implementation of a class shouldn't be of concern to clients of that class. Rather, clients should interest themselves only in aclass's
public interface. Our reference-counting implementation of the St r i ng interface supports exactly the same operations as a
non-reference-counted version, so why muddy the conceptual waters by embedding implementation decisions in the names of classes
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that correspond to abstract concepts? Why indeed? So we don't.

Here'sSt ri ngVal ue:
class String {

private:
struct StringVal ue {
i nt refCount;

char *dat a;

StringVal ue(const char *initVal ue);
~StringVal ue();

H

H

String::StringVal ue:: StringVal ue(const char *initVal ue)
ref Count (1)
{

data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

String::StringVal ue::~StringVal ue()

delete [] data;
}

That'sal thereistoit, and it should be clear that's nowhere near enough to implement the full functionality of areference-counted
string. For one thing, there's neither a copy constructor nor an assignment operator (see Iltem E11), and for another, there's no
manipulation of ther ef Count field. Worry not — the missing functionality will be provided by the St r i ng class. The primary
purpose of St ri ngVal ue isto give us a place to associate a particular value with a count of the number of St ri ng objects sharing
that value. St r i ngVal ue givesusthat, and that's enough.

We're now ready to walk our way through St r i ng's member functions. We'll begin with the constructors:

class String {

public:
String(const char *initValue = "");
String(const String& rhs);

b

The first constructor isimplemented about as simply as possible. We use the passed-in char * string to createanew St ri ngVal ue
object, then we make the St r i ng object we're constructing point to the newly-minted St r i ngVval ue:

String::String(const char *initVal ue)
: val ue(new StringVal ue(initValue))
{}

For client code that |ooks like this,
String s("Mre Effective C++");

we end up with adata structure that looks like this:

(s ——{(1 )——={ More Effective C++ ] is:}—lb®—v-| More Effective C++ |
@—»@—-— More Effective C++ @—FG)—P More Effective C++
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®—>®—> More Effective C++
®—>®—> More Effective C++

St ri ng objects constructed separately, but with the same initial value do not share a data structure, so client code of this form,

String s1("Mre Effective C++");
String s2("Mre Effective C++");

yields this data structure:

oy

-i)—i-@—r-l More Effective C++ | {3_‘_9—»@_4 More Effective C++ I
D]

More Effective C++ | (52) 1 More Effective C++

a

@—b-®—b- More Effective C++ @_"®_" More Effective C++
@—»@—» More Effective C++ [: :}—--{ yF—== More Effective C++
@—@—P More Effective C++
@—b@—b More Effective C++

@—>-®—> More Effective C++
@—>®—> More Effective C++

It is possible to eliminate such duplication by having St ri ng (or St ri ngVal ue) keep track of existing St ri ngVal ue objects
and create new ones only for truly unique strings, but such refinements on reference counting are somewhat off the beaten path. Asa
result, I'll leave them in the form of the feared and hated exercise for the reader.

The St ri ng copy constructor is not only unfeared and unhated, it's also efficient: the newly created St r i ng object shares the same
St ringVal ue object asthe St ri ng object that's being copied:

String::String(const String& rhs)
. val ue(rhs. val ue)
{
++val ue- >r ef Count ;
}

Graphically, code like this,

String s1("Mre Effective C++");
String s2 = sl;

results in this data structure:

file:///C|/mauro/Mec/M.htm (140 of 218) [2001-01-17 10:54:29]



More Effective C++ | Book

More Effective C++ | More Effective C++ I

:i (=)
[j Eﬁ)

I
|

&

More Effective C++ o More Effective C++

2

More Effective C++

o More Effective C++

& @

Thisis substantially more efficient than a conventional (non-reference-counted) St ri ng class, because there is no need to allocate
memory for the second copy of the string value, no need to deallocate that memory later, and no need to copy the value that would go
in that memory. Instead, we merely copy a pointer and increment a reference count.

The St ri ng destructor is also easy to implement, because most of the time it doesn't do anything. Aslong as the reference count for a
St ri ngVal ue isnon-zero, at least one St r i ng object is using the value; it must therefore not be destroyed. Only when the

St ri ng being destructed is the sole user of the value — i.e., when the value's reference count is 1 — should the St r i ng destructor
destroy the St r i ngVal ue object:

class String {

public:
~String();
b
String::~String()
{
if (--value->refCount == 0) del ete val ue;
}

Compare the efficiency of this function with that of the destructor for a non-reference-counted implementation. Such a function would
awayscall del et e and would amost certainly have a nontrivial runtime cost. Provided that different St r i ng objectsdo in fact

sometimes have the same values, the implementation above will sometimes do nothing more than decrement a counter and compare it
to zero.

If, at this point, the appeal of reference counting is not becoming apparent, you're just not paying attention.

That's all thereisto St ri ng construction and destruction, so we'll move on to consideration of the St r i ng assignment operator:
class String {
public:
String& operator=(const String& rhs);

1
When aclient writes code like this,
sl = s2; /1 sl and s2 are both String objects
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the result of the assignment should be that s1 and s2 both point to the same St r i ngVal ue object. That object's reference count
should therefore be incremented during the assignment. Furthermore, the St r i ngVal ue object that s1 pointed to prior to the
assignment should have its reference count decremented, because s 1 will no longer have that value. If s1 wastheonly St ri ng with
that value, the value should be destroyed. In C++, dl that looks like this:

String& String::operator=(const String& rhs)

{
if (value == rhs.value) { /1 do nothing if the val ues
return *this; /!l are already the sane; this
} /! subsunes the usual test of
/1 this against & hs (see ltem E17)
if (--value->refCount == 0) { /! destroy *this's value if
del et e val ue; /1l no one else is using it
}
val ue = rhs. val ue; /! have *this share rhs's
++val ue- >r ef Count ; /1l val ue
return *this;
}

Copy-on-Write

To round out our examination of reference-counted strings, consider an array-bracket operator ([ ] ), which allows individual
characters within strings to be read and written:

class String {

public:
const charé&
operator[](int index) const; /1l for const Strings
char & operator[] (int index); /1l for non-const Strings
1

Implementation of the const version of thisfunction is straightforward, because it's a read-only operation; the value of the string
can't be affected:

const char& String::operator[](int index) const

{
}

(This function performs sanity checking oni ndex in the grand C++ tradition, which isto say not at all. Asusual, if you'd likea
greater degree of parameter validation, it's easy to add.)

return val ue->dat a[ i ndex] ;

Thenon-const version of oper at or [ ] isacompletely different story. This function may be called to read a character, but it might
be called to write one, too:

String s;
cout << s[3]; /[l this is a read
s[5] = '"x"; /[l this is a wite

We'd like to deal with reads and writes differently. A ssmple read can be dealt with in the same way asthe const version of
oper at or [] above, but awrite must be implemented in quite a different fashion.

When we modify a St r i ng's value, we have to be careful to avoid modifying the value of other St r i ng objects that happen to be
sharing the same St r i ngVal ue object. Unfortunately, there is no way for C++ compilersto tell us whether a particular use of
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operator[] isfor aread or awrite, so we must be pessimistic and assume that all callsto the non-const operat or[] arefor
writes. (Proxy classes can help us differentiate reads from writes — see [tem 30.)

To implement the non-const oper at or [ ] safely, we must ensure that no other St r i ng object sharesthe St ri ngVal ue to be
modified by the presumed write. In short, we must ensure that the reference count for aSt ri ng's St ri ngVal ue object is exactly
one any time we return areferenceto a character inside that St r i ngVal ue object. Here's how we do it:

char& String::operator[](int index)

{
/1 if we're sharing a value with other String objects,
/1l break off a separate copy of the value for ourselves
if (value->refCount > 1) {

--val ue- >r ef Count ; /] decrenent current value's
[/ refCount, because we won't
/1 be using that val ue any nore

val ue = /1 make a copy of the
new StringVal ue(val ue->data); /'l value for ourselves
}

/1l return a reference to a character inside our
/1 unshared StringVal ue object
return val ue->dat a[ i ndex] ;

}

Thisidea— that of sharing a value with other objects until we have to write on our own copy of the value — has along and
distinguished history in Computer Science, especially in operating systems, where processes are routinely allowed to share pages until
they want to modify data on their own copy of a page. The technique is common enough to have a name: copy-on-write. It's a specific
example of amore general approach to efficiency, that of lazy evaluation (see Item 17).

Pointers, References, and Copy-on-Write

This implementation of copy-on-write allows us to preserve both efficiency and correctness — almost. There is one lingering problem.
Consider this code:

String s1 = "Hell o";
char *p = &s1[1];

Our data structure at this point looks like this:

O -® -H.}..u —0— H?"u

E)—(1)— H?Ilu E)—(1)——> H?Hu

P P

(s )——(1)——{ Hello

Now consider an additional statement:
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String s2 = s1,;

The St ri ng copy constructor will makes2 shares1's St ri ngVal ue, so the resulting data structure will be this one:

s1 @
@—»{Holo] Hello @ Hello
&2 § €2 b

o
[

(&
P

)

© Hello

Hello

® @

© Hello
!

®® O

p
The implications of a statement such as the following, then, are not pleasant to contempl ate:
*p = "X /] nodifies both s1 and s2!

Thereisnoway the St r i ng copy constructor can detect this problem, because it has no way to know that a pointer into s1's
St ri ngVal ue object exists. And this problem isn't limited to pointers: it would exist if someone had saved a reference to the result
of acaltoStri ng'snon-const operator|[].

There are at |east three ways of dealing with this problem. The first isto ignore it, to pretend it doesn't exist. This approach turns out to
be distressingly common in class libraries that implement reference-counted strings. If you have access to a reference-counted string,
try the above example and seeif you're distressed, too. If you're not sure if you have access to a reference-counted string, try the
example anyway. Through the wonder of encapsulation, you may be using such atype without knowing it.

Not all implementations ignore such problems. A dightly more sophisticated way of dealing with such difficultiesisto define them
out of existence. Implementations adopting this strategy typically put something in their documentation that says, more or less, "Don't
do that. If you do, results are undefined." If you then do it anyway — wittingly or no — and complain about the results, they respond,
"Well, we told you not to do that." Such implementations are often efficient, but they leave much to be desired in the usability
department.

Thereisathird solution, and that's to eliminate the problem. It's not difficult to implement, but it can reduce the amount of value
sharing between objects. Its essenceisthis: add aflag to each St ri ngVal ue object indicating whether that object is shareable. Turn
the flag on initially (the object is shareable), but turn it off whenever the non-const oper at or [ ] isinvoked on the value
represented by that object. Oncetheflagissettof al se, it stays that way forever.10

Here'samodified version of St ri ngVal ue that includes a shareability flag:
class String {

private:
struct StringVal ue {
i nt refCount;
bool shareabl e; /] add this

char *dat a;
StringVal ue(const char *initVal ue);
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~StringVval ue();
i

3
String::StringVal ue:: StringVal ue(const char *initVal ue)
ref Count (1),
shar eabl e(true) /! add this
{
data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

String::StringVal ue:: ~StringVal ue()

delete [] data;
}

Asyou can see, not much needs to change; the two lines that require modification are flagged with comments. Of course, St ri ng's
member functions must be updated to take the shar eabl e field into account. Here's how the copy constructor would do that:

String::String(const String& rhs)
{
if (rhs.val ue->shareable) {
val ue = rhs. val ue;
++val ue- >r ef Count ;

}

el se {
val ue = new StringVal ue(rhs. val ue->data);
}
}

All the other St r i ng member functions would have to check the shar eabl e field in an analogous fashion. The non-const
version of oper at or [ ] would be the only function to set theshar eabl e flagtof al se:

char& String::operator[](int index)

if (value->refCount > 1) {
- -val ue->ref Count ;
val ue = new StringVal ue(val ue->data);

}

val ue- >shareabl e = fal se; /] add this
return val ue->dat a[ i ndex] ;

}

If you use the proxy class technique of Item 30 to distinguish read usage from write usage in oper at or [ ], you can usually reduce
the number of St ri ngVal ue objects that must be marked unshareable.

A Reference-Counting Base Class

Reference counting is useful for more than just strings. Any class in which different objects may have valuesin commonisa
legitimate candidate for reference counting. Rewriting a class to take advantage of reference counting can be alot of work, however,
and most of us already have more than enough to do. Wouldn't it be nice if we could somehow write (and test and document) the
reference counting code in a context-independent manner, then just graft it onto classes when needed? Of course it would. In a curious
twist of fate, there'saway to do it (or at least to do most of it).

Thefirst step isto create a base class, RCObj ect , for reference-counted objects. Any class wishing to take advantage of automatic
reference counting must inherit from this class. RCObj ect encapsulates the reference count itself, as well as functions for
incrementing and decrementing that count. It also contains the code for destroying avalue when it isno longer in use, i.e., when its
reference count becomes 0. Finally, it contains afield that keeps track of whether this value is shareable, and it provides functions to
guery thisvalue and set it to false. There is no need for afunction to set the shareability field to true, because all values are shareable
by default. As noted above, once an object has been tagged unshareable, there is no way to make it shareable again.
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RCbj ect 'sclass definition looks like this:

cl ass RCOhj ect {
public:
RCObj ect () ;
RCObj ect (const RCOhj ect & rhs);
RCObj ect & oper at or =(const RCCbj ect & rhs);
virtual ~RCObject() = 0;
voi d addRef erence();
voi d renoveRef erence();
voi d mar kUnshar eabl e() ;
bool isShareabl e() const;

bool isShared() const;
private:

i nt refCount;
bool shareabl e;

b

RCObj ect scan be created (as the base class parts of more derived objects) and destroyed; they can have new references added to
them and can have current references removed; their shareability status can be queried and can be disabled; and they can report
whether they are currently being shared. That's all they offer. As a class encapsulating the notion of being reference-countable, that's
really all we have aright to expect them to do. Note the tell-tale virtual destructor, a sure sign this classis designed for use as a base
class (see Item E14). Note also how the destructor is a pure virtual function, asure sign this classis designed to be used only as a base

class.

The code to implement RCChj ect s, if nothing else, brief:
RCObj ect : : RCObj ect ()
ref Count (0), shareable(true) {}

RCObj ect : : RCObj ect (const RCObj ect &)
ref Count (0), shareable(true) {}

RCObj ect & RCObj ect : : oper at or =(const RCObj ect &)
{ return *this; }

RCObj ect: : ~RChj ect () {} /1 virtual dtors nust always
/'l be inplenmented, even if
/1l they are pure virtual
/1 and do nothing (see al so
/1 Item 33 and |tem E14)

voi d RCOhj ect:: addRef erence() { ++refCount; }

voi d RCOhj ect: : renpveRef erence()
{ if (--refCount == 0) delete this; }

voi d RCOhj ect: : mar kUnshar eabl e()
{ shareable = false; }

bool RCObj ect::isShareabl e() const
{ return shareable; }

bool RCObject::isShared() const
{ return refCount > 1; }

Curiously, we set r ef Count to O inside both constructors. This seems counterintuitive. Surely at |east the creator of the new
RCObj ect isreferringtoit! Asit turnsout, it smplifies things for the creators of RCCbj ect sto set r ef Count to 1 themselves, so
we ablige them here by not getting in their way. Wel'll get a chance to see the resulting code simplification shortly.
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Another curious thing is that the copy constructor always setsr ef Count to O, regardless of the value of r ef Count for the
RCObj ect we're copying. That's because we're creating a new object representing a value, and new values are always unshared and
referenced only by their creator. Again, the creator is responsible for setting ther ef Count to its proper value.

The RCObj ect assignment operator |ooks downright subversive: it does nothing. Frankly, it's unlikely this operator will ever be
called. RCObj ect isabase classfor a shared value object, and in a system based on reference counting, such objects are not assigned
to one another, objects pointing to them are. In our case, we don't expect St r i ngVal ue aobjects to be assigned to one another, we
expect only St r i ng objectsto be involved in assignments. In such assignments, no change is made to thevalue of aSt r i ngVval ue
—only the St r i ngVal ue reference count is modified.

Nevertheless, it is conceivable that some as-yet-unwritten class might someday inherit from RCCbj ect and might wish to allow
assignment of reference-counted values (see Item 32 and Item E16). If so, RCObj ect 's assignment operator should do the right thing,
and the right thing is to do nothing. To see why, imagine that we wished to allow assignments between St r i ngVal ue objects. Given
StringVal ue objectssvl1 and sv2, what should happen to sv1'sand sv2'sreference countsin an assignment?

svl = sv2; /! how are svl's and sv2's reference
/] counts affected?

Before the assignment, some number of St r i nhg objects are pointing to sv1. That number is unchanged by the assignment, because
only sv1'svalue changes. Similarly, some number of St ri ng objects are pointing to sv2 prior to the assignment, and after the
assignment, exactly the same St r i ng objects point to sv2. sv2's reference count is aso unchanged. When RCObj ect s are
involved in an assignment, then, the number of objects pointing to those objects is unaffected, hence RCObj ect ::oper at or =
should change no reference counts. That's exactly what the implementation above does. Counterintuitive? Perhaps, but it's still correct.

The code for RCObj ect : : renbveRef er ence isresponsible not only for decrementing the object'sr ef Count , but also for
destroying the object if the new value of r ef Count isO0. It accomplishesthislatter task by del et eingt hi s, which, as Item 27
explains, issafe only if we know that *t hi s isaheap object. For this class to be successful, we must engineer things so that
RCObj ect s can be created only on the heap. General approaches to achieving that end are discussed in Item 27, but the specific
measures we'll employ in this case are described at the conclusion of this Item.

To take advantage of our new reference-counting base class, we modify St r i hgVal ue to inherit its reference counting capabilities
from RCCbj ect :

class String {
private:
struct StringVal ue: public RCObject {
char *dat a;

StringVal ue(const char *initVal ue);
~StringVval ue();

3
b
String::StringVal ue:: StringVal ue(const char *initVal ue)
{
data = new char[strlen(initValue) + 1];
strcpy(data, initValue);
}

String::StringVal ue:: ~StringVal ue()

delete [] data;
}

Thisversion of St ri ngVal ue isamost identical to the one we saw earlier. The only thing that's changed isthat St r i ngVal ue's
member functions no longer manipulate ther ef Count field. RCCbj ect now handles what they used to do.
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Don't feel bad if you blanched at the sight of a nested class (St ri ngVal ue) inheriting from a class (RCOhj ect ) that's unrelated to
the nesting class (St r i ng). It looks weird to everybody at first, but it's perfectly kosher. A nested classis just as much a class as any
other, so it has the freedom to inherit from whatever other classesit likes. In time, you won't think twice about such inheritance
relationships.

Automating Reference Count Manipulations

The RCObj ect classgives us aplaceto store areference count, and it gives us member functions through which that reference count
can be manipulated, but the calls to those functions must still be manually inserted in other classes. It is still up tothe St ri ng copy
constructor and the St r i ng assignment operator to call addRef er ence andr enoveRef er ence on St ri ngVal ue objects.
Thisis clumsy. We'd like to move those calls out into a reusable class, too, thus freeing authors of classeslike St r i ng from worrying
about any of the details of reference counting. Can it be done? Isn't C++ supposed to support reuse?

It can, and it does. There's no easy way to arrange things so that all reference-counting considerations can be moved out of application
classes, but there is away to eliminate most of them for most classes. (In some application classes, you can eliminate all
reference-counting code, but our St r i ng class, alas, isn't one of them. One member function spoils the party, and | suspect you won't
be too surprised to hear it's our old nemesis, the non-const version of oper at or [ ] . Take heart, however; we'll tame that miscreant
intheend.)

Notice that each St r i ng object contains a pointer to the St r i ngVal ue object representing that St ri ng's value:
class String {

private:

struct StringValue: public RCObject { ... };

StringVal ue *val ue; /1 value of this String
i

We have to manipulate ther ef Count field of the St r i ngVal ue object anytime anything interesting happens to one of the pointers
pointing to it. "Interesting happenings" include copying a pointer, reassigning one, and destroying one. If we could somehow make the
pointer itself detect these happenings and automatically perform the necessary manipulations of ther ef Count field, we'd be home
free. Unfortunately, pointers are rather dense creatures, and the chances of them detecting anything, much less automatically reacting
to things they detect, are pretty slim. Fortunately, there's away to smarten them up: replace them with objects that act like pointers, but
that do more.

Such objects are called smart pointers, and you can read about them in more detail than you probably careto in [tem 28. For our
purposes here, it's enough to know that smart pointer objects support the member selection (- >) and dereferencing (* ) operations, just
like real pointers (which, in this context, are generally referred to as dumb pointers), and, like dumb pointers, they are strongly typed:
you can't make a smart pointer-to-T point to an object that isn't of type T.

Here's atemplate for objects that act as smart pointers to reference-counted objects:

/1l tenmplate class for snart pointers-to-T objects. T nust
/'l support the RCObject interface, typically by inheriting
/1 from RCObj ect
t enpl at e<cl ass T>
class RCPtr {
public:

RCPtr(T* real Ptr = 0);

RCPtr (const RCPtr& rhs);

~RCPtr();

RCPt r & oper at or =(const RCPtr& rhs);

T* operator->() const; /'l see ltem 28

T& operator*() const; /'l see ltem 28
private:

T *poi nt ee; /1 dunb pointer this

/1 object is emulating

void init(); [l common initialization
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}; /'l code

This template gives smart pointer objects control over what happens during their construction, assignment, and destruction. When such
events occur, these objects can automatically perform the appropriate manipulations of ther ef Count field in the objectsto which
they point.

For example, when an RCPt r is created, the object it points to needs to have its reference count increased. There's no need to burden
application developers with the requirement to tend to this irksome detail manually, because RCPt r constructors can handle it
themselves. The code in the two constructorsis all but identical — only the member initialization lists differ — so rather than write it
twice, we put it in a private member function called i ni t and have both constructors call that:

t enpl at e<cl ass T>
RCPtr<T>:: RCPtr(T* real Ptr): pointee(real Ptr)
{

}

t enpl at e<cl ass T>
RCPt r<T>:: RCPtr(const RCPtré& rhs): pointee(rhs. pointee)

{
}

t enpl at e<cl ass T>
void RCPtr<T>::init()

init();

init();

{
if (pointee == 0) { /1 if the dunb pointer is
return; /1 null, sois the smart one
}
i f (pointee->i sShareable() == false) { /1 if the val ue
poi ntee = new T(*poi ntee); /1 isn't shareable,
} /1 copy it
poi nt ee- >addRef erence() ; /1l note that there is now a
} /1l new reference to the val ue

Moving common code into a separate function likei ni t is exemplary software engineering, but its luster dimswhen, asin this case,
the function doesn't behave correctly.

The problem isthis. When i ni t needsto create a new copy of avalue (because the existing copy isn't shareable), it executes the
following code:

poi ntee = new T(*poi ntee);

Thetype of poi nt ee ispointer-to-T, so this statement creates anew T object and initializesit by calling T's copy constructor. In the
caseof an RCPt r intheStri ng class, Twill beStri ng: : Stri ngVal ue, so the statement above will cal

String:: StringVal ue'scopy constructor. We haven't declared a copy constructor for that class, however, so our compilers will
generate one for us. The copy constructor so generated will, in accordance with the rules for automatically generated copy constructors
in C++, copy only St ri ngVal ue'sdat a pointer; it will not copy the char * string dat a pointsto. Such behavior is disastrousin
nearly any class (not just reference-counted classes), and that's why you should get into the habit of writing a copy constructor (and an
assignment operator) for all your classes that contain pointers (see Item E11).

The correct behavior of the RCPt r <T> template depends on T containing a copy constructor that makes a truly independent copy
(i.e., adeep copy) of the value represented by T. We must augment St r i ngVal ue with such a constructor before we can use it with
the RCPt r class:

class String {
private:

struct StringVal ue: public RCObject {
StringVal ue(const StringVal ue& rhs);

b
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b

String::StringVal ue:: StringVal ue(const StringVal ue& rhs)
{

data = new char[strlen(rhs.data) + 1];

strcpy(data, rhs.data);
}

The existence of a degp-copying copy constructor is not the only assumption RCPt r <T> makes about T. It also requires that T inherit
from RCObj ect , or at least that T provide all the functionality that RCObj ect does. In view of the fact that RCPt r objects are
designed to point only to reference-counted objects, thisis hardly an unreasonable assumption. Neverthel ess, the assumption must be
documented.

A final assumption in RCPt r <T> isthat the type of the object pointed to is T. This seems obvious enough. After al, poi nt ee is
declared to be of type T* . But poi nt ee might really point to a class derived from T. For example, if we had a class
Speci al St ri ngVal ue that inherited from St ri ng::St ri ngVal ue,

class String {

private:

struct StringValue: public RCObhject { ... };

struct Special StringValue: public Stringvalue { ... };
1

we could end up witha St ri ng containing aRCPt r <St r i ngVal ue> pointingto aSpeci al St ri ngVal ue object. In that case,
wedwant thispartof i ni t,

poi ntee = new T(*poi ntee); /[l Tis StringVal ue, but
/] pointee really points to
/'l a Special StringVal ue

to call Speci al St ri ngVal ue'scopy constructor, not St ri ngVal ue's. We can arrange for thisto happen by using avirtual copy
constructor (see Item 25). In the case of our St r i ng class, we don't expect classes to derive from St ri ngVal ue, so we'll disregard
thisissue.

With RCPt r 's constructors out of the way, the rest of the class's functions can be dispatched with considerably greater alacrity.
Assignment of an RCPt r is straightforward, though the need to test whether the newly assigned value is shareable complicates
matters slightly. Fortunately, such complications have aready been handled by thei ni t function that was created for RCPt r 's
constructors. We take advantage of that fact by using it again here:

t enpl at e<cl ass T>
RCPt r <T>& RCPtr <T>::operator=(const RCPtr& rhs)

{
if (pointee != rhs. pointee) { /1 skip assignnents
/'l where the val ue
/1l doesn't change
if (pointee) {
poi nt ee- >r enmoveRef erence() ; /'l remove reference to
} /'l current val ue
poi nt ee = rhs. poi nt ee; /'l point to new val ue
init(); /1l if possible, share it
} /] el se make own copy
return *this;
}

The destructor is easier. When an RCPt r is destroyed, it simply removes its reference to the reference-counted object:

t enpl at e<cl ass T>
RCPt r <T>: : ~RCPt r ()
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{

i f (pointee)pointee->renoveReference();

}

If the RCPt r that just expired was the last reference to the object, that object will be destroyed inside RCObj ect's

r enoveRef er ence member function. Hence RCPt r objects never need to worry about destroying the values they point to.

Finally, RCPt r 's pointer-emulating operators are part of the smart pointer boilerplate you can read about in [tem 28:

t enpl at e<cl ass T>
T* RCPtr<T>::operator->() const { return pointee; }
t enpl at e<cl ass T>
T& RCPtr<T>::operator*() const { return *pointee; }

Putting it All Together

Enough! Finis! At long last we arein aposition to put al the pieces together and build a reference-counted St r i ng class based on
the reusable RCObj ect and RCPt r classes. With luck, you haven't forgotten that that was our original goal.

Each reference-counted string is implemented via this data structure:

RCObject
class

RCObject
class

String
object

RCPLE StringValue
object painter object pointer

Heap Memory

pounrer

RCObject
class

public
inheritance

StringValue

- Heap Memo
ohject P A

pointer pointer
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RCObject
class

public
inheritance

StringValue

H M
object eap Memory

poimnter pointer

RCObject
class

public
inheritance

StringValue
object

Heap Memory

pointer pointer

RCObject
class

public
inheritance

StringValue

H M
obiect eap Memory

pointer pointer

The classes making up this data structure are defined like this:
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t enpl at e<cl ass T> /1l tenplate class for snart
class RCPtr { /! pointers-to-T objects; T
public: /1 must inherit from RCObject

RCPtr(T* real Ptr = 0);
RCPtr (const RCPtré& rhs);
~RCPtr();

RCPtr & operator=(const RCPtr& rhs);

T* operator->() const;
T& operator*() const;

private:
T *poi nt ee;

void init();
s

cl ass RChj ect { /'l base class for reference-
public: /1 counted objects

voi d addRef erence();

voi d renoveRef erence();

voi d mar kUnshar eabl e() ;
bool isShareabl e() const;

bool isShared() const;

pr ot ect ed:
RCObj ect () ;
RCObj ect (const RCOhj ect & rhs);
RCObj ect & oper at or =(const RCCObj ect & rhs);
virtual ~RCObject() = O;

private:
i nt refCount;
bool shareabl e;

};

class String { /'l class to be used by
public: /1 application devel opers

String(const char *value = "");

const char& operator[](int index) const;
char & operator[] (int index);

private:
/1 class representing string val ues
struct StringVal ue: public RCObject {
char *dat a;

StringVal ue(const char *initVal ue);
StringVal ue(const StringVal ue& rhs);
void init(const char *initValue);
~StringVal ue();

b
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RCPt r<Stri ngVal ue> val ue;
3
For the most part, thisisjust arecap of what we've aready developed, so nothing should be much of a surprise. Close examination

revealswe'veadded ani ni t functionto St ri ng: : St ri ngVal ue, but, aswell see below, that serves the same purpose as the
corresponding function in RCPt r : it prevents code duplication in the constructors.

Thereis asignificant difference between the public interface of this St r i ng class and the one we used at the beginning of this Item.
Where is the copy constructor? Where is the assignment operator? Where is the destructor? Something is definitely amiss here.

Actually, no. Nothing is amiss. In fact, some things are working perfectly. If you don't see what they are, prepare yourself for a C++
epiphany.

We don't need those functions anymore. Sure, copying of St ri ng objectsis still supported, and yes, the copying will correctly handle
the underlying reference-counted St r i ngVal ue objects, but the St r i ng class doesn't have to provide asingle line of code to make
this happen. That's because the compiler-generated copy constructor for St ri ng will automatically call the copy constructor for

St ri ng'sRCPt r member, and the copy constructor for that class will perform all the necessary manipulations of the

St ri ngVal ue object, including its reference count. An RCPt r isasmart pointer, remember? We designed it to take care of the
details of reference counting, so that's what it does. It also handles assignment and destruction, and that'swhy St r i ng doesn't need to
write those functions, either. Our original goal was to move the unreusabl e reference-counting code out of our hand-written St r i ng
class and into context-independent classes where it would be available for use with any class. Now we've done it (in the form of the
RCObj ect and RCPt r classes), so don't be so surprised when it suddenly starts working. It's supposed to work.

Just so you have everything in one place, here's the implementation of RCCObj ect :
RCObj ect : : RCObj ect ()
ref Count (0), shareable(true) {}
RCObj ect : : RCObj ect (const RCObj ect &)
ref Count (0), shareable(true) {}
RCObj ect & RCObj ect : : oper at or =(const RCObj ect &)
{ return *this; }
RCObj ect: : ~RChj ect () {}
voi d RCOhj ect:: addRef erence() { ++refCount; }
voi d RCOhj ect: : renmpoveRef erence()
{ if (--refCount == 0) delete this; }
voi d RCOhj ect : : mar kUnshar eabl e()
{ shareable = fal se; }
bool RCObj ect::isShareabl e() const
{ return shareable; }

bool RCObject::isShared() const
{ return refCount > 1; }

And here's the implementation of RCPt r :
t enpl at e<cl ass T>
void RCPtr<T>::init()
{

if (pointee == 0) return;

i f (pointee->isShareable() == fal se) {
poi nt ee = new T(*poi ntee);

}

poi nt ee- >addRef erence() ;

}

t enpl at e<cl ass T>
RCPtr<T>:: RCPtr(T* real Ptr)
poi ntee(real Ptr)

{init(); }
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t enpl at e<cl ass T>

RCPt r<T>: : RCPtr (const RCPtré& rhs)

. poi ntee(rhs. pointee)

{ init(); }

t enpl at e<cl ass T>

RCPt r <T>: : ~RCPt r ()

{ if (pointee)pointee->renoveReference(); }
tenpl at e<cl ass T>

RCPt r <T>& RCPt r <T>:: operat or=(const RCPtr& rhs)
{

if (pointee != rhs. pointee) {
if (pointee) pointee->renoveReference();

poi nt ee = rhs. poi nt ee;
init();
}
return *this;
}
t enpl at e<cl ass T>
T* RCPtr<T>::operator->() const { return pointee; }

t enpl at e<cl ass T>
T& RCPtr<T>::operator*() const { return *pointee; }

The implementation of St ri ng: : St ri ngVal ue lookslikethis:
void String::StringValue::init(const char *initVal ue)

{

data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

String::StringVal ue:: StringVal ue(const char *initVal ue)
{ init(initvalue); }

String::StringVal ue:: StringVal ue(const StringVal ue& rhs)
{ init(rhs.data); }

String::StringVal ue::~StringVal ue()

{ delete [] data; }

Ultimately, all roadslead to St r i ng, and that class is implemented this way:
String::String(const char *initVal ue)
val ue(new StringVal ue(initValue)) {}
const char& String::operator[](int index) const
{ return val ue->datalindex]; }

char& String::operator[](int index)

if (value->isShared()) {
val ue = new StringVal ue(val ue->data);

}

val ue- >mar kUnshar eabl e() ;
return val ue->dat a[ i ndex];

}

If you compare the code for this St r i ng class with that we developed for the St r i ng class using dumb pointers, you'll be struck by
two things. First, theresalot less of it here than there. That's because RCPt r has assumed much of the reference-counting burden that
used to fall on St ri ng. Second, the code that remainsin St r i ng is nearly unchanged: the smart pointer replaced the dumb pointer
essentially seamlessly. In fact, the only changes arein oper at or [ ], wherewe call i sShar ed instead of checking the value of

r ef Count directly and where our use of the smart RCPt r object eliminates the need to manually manipulate the reference count
during a copy-on-write.
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Thisisall very nice, of course. Who can object to |ess code? Who can oppose encapsul ation success stories? The bottom line,
however, is determined more by the impact of this newfangled St r i ng class on its clients than by any of itsimplementation details,
and it is here that things really shine. If no news is good news, the news hereis very good indeed. The St r i ng interface has not
changed. We added reference counting, we added the ability to mark individual string values as unshareable, we moved the notion of
reference countability into a new base class, we added smart pointers to automate the manipulation of reference counts, yet not one
line of client code needs to be changed. Sure, we changed the St r i ng class definition, so clients who want to take advantage of
reference-counted strings must recompile and relink, but their investment in code is completely and utterly preserved. Y ou see?
Encapsulation really isawonderful thing.

Adding Reference Counting to Existing Classes

Everything we've discussed so far assumes we have access to the source code of the classes we're interested in. But what if we'd like to
apply the benefits of reference counting to some class W dget that'sin alibrary we can't modify? There's no way to make W dget
inherit from RCObj ect , so we can't use smart RCPt r swith it. Are we out of luck?

We're not. With some minor modifications to our design, we can add reference counting to any type.

First, let's consider what our design would look like if we could have W dget inherit from RCObj ect . In that case, we'd have to add
aclass, RCW dget , for clients to use, but everything would then be analogousto our St ri ng/St ri ngVal ue example, with
RCW dget playing theroleof St ri ng and W dget playing therole of St ri ngVal ue. The design would look like this:

RCObject

class

CountHolder
object

CountHolder
object

RCObject

RCObject class

class

pubic
inheritance

public

inheritance

RCWidget
object

RCPtr
object

RCWidget
object
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pointer -
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We can now apply the maxim that most problemsin Computer Science can be solved with an additional level of indirection. We add a
new class, Count Hol der , to hold the reference count, and we have Count Hol der inherit from RCObj ect . We also have

Count Hol der contain apointer to aW dget . We then replace the smart RCPt r template with an equally smart RCl Pt r template
that knows about the existence of the Count Hol der class. (The"I" in RCl Pt r standsfor "indirect.") The modified design looks
likethis:
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Just as St r i ngVal ue was an implementation detail hidden from clientsof St ri ng, Count Hol der isan implementation detail
hidden from clients of RCW dget . In fact, it's an implementation detail of RCl Pt r , soit's nested inside that class. RCI Pt r is
implemented this way:
t enpl at e<cl ass T>
class RCIPtr {
public:
RCIPtr(T* real Ptr = 0);
RCI Ptr(const RCIPtr& rhs);
~RCIPtr();

RCI Pt r & operat or=(const RCIPtr& rhs);

const T* operator->() const; /'l see below for an

T* operator->(); /'l explanation of why

const T& operator*() const; /'l these functions are

T& operator*(); /1l declared this way
private:

struct Count Hol der: public RCObject {
~Count Hol der () { delete pointee; }
T *poi nt ee;
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1
Count Hol der *counter;

void init();
voi d nmakeCopy();
3

t enpl at e<cl ass T>
void RCIPtr<T>::init()

{
if (counter->isShareable() == fal se) {
T *ol dvVal ue = count er - >poi nt ee;
counter = new Count Hol der
count er - >poi ntee = new T(*ol dval ue);
}
count er - >addRef er ence() ;
}

t enpl at e<cl ass T>
RCIPtr<T>::RCIPtr(T* real Ptr)
. count er (new Count Hol der)

{

counter->pointee = real Ptr;
init();
}

t enpl at e<cl ass T>
RCI Ptr<T>::RCI Ptr(const RCIPtr& rhs)
counter(rhs. counter)

{ init(); }

t enpl at e<cl ass T>

RCI Ptr<T>::~RCIPtr()

{ counter->renoveReference(); }

t enpl at e<cl ass T>

/] see bel ow

RClI Pt r<T>& RCl Pt r<T>:: operator=(const RCIPtr& rhs)

{

if (counter != rhs.counter) {
count er - >r enoveRef erence() ;
counter = rhs. counter
init();

}

return *this;

}

t enpl at e<cl ass T>

voi d RCl Ptr<T>:: makeCopy()

{

if (counter->isShared()) {

T *ol dVal ue = count er->poi nt ee;
count er - >r enoveRef erence() ;
counter = new Count Hol der
count er - >poi ntee = new T(*ol dval ue);
count er - >addRef er ence() ;
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}

t enpl at e<cl ass T> /1 const access;
const T* RCIPtr<T>::operator->() const /1 no COW needed
{ return counter->pointee; }

t enpl at e<cl ass T> /1l non-const

T* RCI Ptr<T>::operator->() /1 access; COW
{ makeCopy(); return counter->pointee; } /1l needed

t enpl at e<cl ass T> /1 const access;
const T& RCIPtr<T>::operator*() const /1 no COW needed
{ return *(counter->pointee); }

t enpl at e<cl ass T> /1 non-const

T& RCI Pt r<T>:: operator*() /1l access; do the

{ makeCopy(); return *(counter->pointee); } // CONthing

RCI Pt r differsfrom RCPt r in only two ways. First, RCPt r objects point to values directly, while RCl Pt r objects point to values
through intervening Count Hol der abjects. Second, RCl Pt r overloads oper at or - > and oper at or * so that a copy-on-writeis
automatically performed whenever anon-const accessis made to a pointed-to object.

Given RCl Pt r , it's easy to implement RCW dget , because each function in RCW dget isimplemented by forwarding the call
through the underlying RCl Pt r to aW dget object. For example, if W dget lookslikethis,

cl ass Wdget {
public:
W dget (i nt size);
W dget (const W dget & rhs);
~Wdget () ;
W dget & oper at or=(const Wdget& rhs);
voi d doThis();
i nt showrThat () const;

1
RCW dget will be defined this way:
cl ass RCW dget {
public:
RCW dget (i nt size): val ue(new Wdget (size)) {}
voi d doThi s() { val ue->doThis(); }
i nt showThat() const { return val ue->showThat(); }

private:
RCl Pt r <W dget > val ue;
}

Note how the RCW dget constructor callsthe W dget constructor (viathe new operator — see Item 8) with the argument it was
passed; how RCW dget 'sdoThi s callsdoThi s inthe W dget class, and how RCW dget ::showThat returns whatever its

W dget counterpart returns. Notice also how RCW dget declares no copy constructor, no assignment operator, and no destructor.
Aswiththe St ri ng class, thereis no need to write these functions. Thanks to the behavior of the RCl Pt r class, the default versions
do theright things.

If the thought occurs to you that creation of RCW dget isso mechanical, it could be automated, you're right. It would not be difficult
to write a program that takes a class like W dget asinput and produces a class like RCW dget asoutput. If you write such a
program, please let me know.

Evaluation

Let us disentangle ourselves from the details of widgets, strings, values, smart pointers, and reference-counting base classes. That
gives us an opportunity to step back and view reference counting in a broader context. In that more general context, we must address a
higher-level question, namely, when is reference counting an appropriate technique?

file:///IC|/mauro/Mec/M.htm (161 of 218) [2001-01-17 10:54:30]



More Effective C++ | Book

Reference-counting implementations are not without cost. Each reference-counted value carries a reference count with it, and most
operations require that this reference count be examined or manipulated in some way. Object values therefore require more memory,
and we sometimes execute more code when we work with them. Furthermore, the underlying source code is considerably more
complex for areference-counted class than for aless elaborate implementation. An un-reference-counted string class typically stands
onitsown, whileour final St ri ng classis useless unlessit's augmented with three auxiliary classes (St r i ngVal ue, RCObj ect
and RCPt r ). True, our more complicated design holds out the promise of greater efficiency when values can be shared, it eliminates
the need to track object ownership, and it promotes reusability of the reference counting idea and implementation. Nevertheless, that
quartet of classes has to be written, tested, documented, and maintained, and that's going to be more work than writing, testing,
documenting, and maintaining a single class. Even a manager can see that.

Reference counting is an optimization technique predicated on the assumption that objects will commonly share values (see also Item
18). If this assumption fails to hold, reference counting will use more memory than a more conventional implementation and it will

execute more code. On the other hand, if your objects do tend to have common values, reference counting should save you both time
and space. The bigger your object values and the more objects that can simultaneously share values, the more memory you'll save. The
more you copy and assign values between objects, the more time you'll save. The more expensive it isto create and destroy a value,
the more time you'll save there, too. In short, reference counting is most useful for improving efficiency under the following
conditions:

« Relatively few values are shared by relatively many objects. Such sharing typically arises through calls to assignment
operators and copy constructors. The higher the objects/values ratio, the better the case for reference counting.

« Object values are expensiveto create or destroy, or they use lots of memory. Even when this is the case, reference counting
still buys you nothing unless these values can be shared by multiple objects.

There is only one sure way to tell whether these conditions are satisfied, and that way is not to guess or rely on your programmer's
intuition (see Item 16). The reliable way to find out whether your program can benefit from reference counting is to profile or
instrument it. That way you can find out if creating and destroying valuesis a performance bottleneck, and you can measure the
objects/values ratio. Only when you have such datain hand are you in a position to determine whether the benefits of reference
counting (of which there are many) outweigh the disadvantages (of which there are also many).

Even when the conditions above are satisfied, a design employing reference counting may still be inappropriate. Some data structures
(e.g., directed graphs) lead to self-referential or circular dependency structures. Such data structures have a tendency to spawn isolated
collections of objects, used by no one, whose reference counts never drop to zero. That's because each object in the unused structureis
pointed to by at least one other abject in the same structure. Industrial-strength garbage collectors use special techniques to find such
structures and eliminate them, but the simple reference-counting approach we've examined hereis not easily extended to include such
techniques.

Reference counting can be attractive even if efficiency is not your primary concern. If you find yourself weighed down with
uncertainty over who's allowed to delete what, reference counting could be just the technique you need to ease your burden. Many
programmers are devoted to reference counting for this reason alone.

Let us close this discussion on atechnical note by tying up one remaining loose end. When RCObj ect : : r enoveRef er ence
decrements an object's reference count, it checks to seeif the new count is 0. If itis, r enbveRef er ence destroys the object by
del et eingt hi s. Thisisasafe operation only if the object was allocated by calling new, so we need some way of ensuring that
RCObj ect sare created only in that manner.

In this case we do it by convention. RCCObj ect isdesigned for use as a base class of reference-counted value objects, and those value
objects should be referred to only by smart RCPt r pointers. Furthermore, the value objects should be instantiated only by application
objects that realize values are being shared; the classes describing the value objects should never be available for general use. In our
example, the class for value objectsis St r i ngVal ue, and we limit its use by making it privatein St ri ng. Only St ri ng can
create St r i ngVal ue objects, so it is up to the author of the St r i ng classto ensure that all such objects are alocated vianew.

Our approach to the constraint that RCCObj ect s be created only on the heap, then, isto assign responsibility for conformance to this
constraint to awell-defined set of classes and to ensure that only that set of classes can create RCObj ect s. Thereis no possibility that
random clients can accidently (or maliciously) create RCObj ect sin an inappropriate manner. We limit the right to create
reference-counted objects, and when we do hand out the right, we make it clear that it's accompanied by the concomitant responsibility
to follow the rules governing object creation.
Back to Item 29: Reference counting.
Continue to Item 31: Making functions virtual with respect to more than one object

Item 30: Proxy classes.
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Though your in-laws may be one-dimensional, the world, in general, is not. Unfortunately, C++ hasn't yet caught on to that fact. At
least, there's little evidence for it in the language's support for arrays. Y ou can create two-dimensional, three-dimensional — heck, you
can create n-dimensional — arraysin FORTRAN, in BASIC, even in COBOL (okay, FORTRAN only allows up to seven dimensions,
but let's not quibble), but can you do it in C++? Only sometimes, and even then only sort of .

Thismuch islegal:

int data[10][ 20]; /1 2D array: 10 by 20

The corresponding construct using variables as dimension sizes, however, is not:
voi d processlnput(int dinml, int dinR)

{
i nt data[diml][ding]; /1 error! array dinmensions
/1 must be known during
} /1 conpilation
It's not even legal for a heap-based alocation:
int *data =
new i nt[di ml][di nR]; /'l error!

Implementing Two-Dimensional Arrays

Multidimensional arrays are as useful in C++ asthey are in any other language, so it's important to come up with away to get decent
support for them. The usua way isthe standard one in C++: create a class to represent the objects we need but that are missing in the
language proper. Hence we can define a class template for two-dimensional arrays:

t enpl at e<cl ass T>
class Array2D ({
public:
Array2D(int dinl, int dinR);

3
Now we can define the arrays we want:
Array2D<i nt > data(10, 20); /1l fine

Array2D<fl oat> *data =
new Array2D<f| oat>(10, 20); [l fine

void processlnput(int diml, int dinR)

{
Array2D<i nt> data(di nl, dinR); /'l fine

}
Using these array objects, however, isn't quite as straightforward. In keeping with the grand syntactic tradition of both C and C++,
wed like to be able to use brackets to index into our arrays,

cout << data[3][6];

but how do we declare the indexing operator in Ar r ay2Dto let us do this?

Our first impulse might beto declare oper at or [ ][] functions, likethis:

t enpl at e<cl ass T>
class Array2D {
public:

/1 declarations that won't conpile
T& operator[][](int indexl, int index2);
const T& operator[][](int index1, int index2) const;

b
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We'd quickly learn to rein in such impulses, however, because there is no such thing asoper at or [ ][ ], and don't think your
compilerswill forget it. (For acomplete list of operators, overloadable and otherwise, see Iltem 7.) We'll have to do something else.

If you can stomach the syntax, you might follow the lead of the many programming languages that use parentheses to index into
arrays. To use parentheses, you just overload oper at or () :

t enpl at e<cl ass T>
class Array2D {
public:

/] declarations that will conpile
T& operator()(int indexl, int index2);
const T& operator()(int indexl, int index2) const;

1
Clients then use arrays this way:
cout << data(3, 6);

Thisis easy to implement and easy to generalize to as many dimensions as you like. The drawback isthat your Ar r ay 2D objects don't
look like built-in arrays any more. In fact, the above access to element (3, 6) of dat a looks, on the face of it, like afunction call.

If you reject the thought of your arrays looking like FORTRAN refugees, you might turn again to the notion of using brackets as the
indexing operator. Although thereisno such thingasoperat or[ ][], it isnonetheless legal to write code that appearsto useiit:
int data[10][ 20];

cout << data[3][6]; /'l fine
What gives?

What givesisthat the variable dat a isnot really atwo-dimensional array at all, it's a 10-element one-dimensional array. Each of
those 10 elementsisitself a 20-element array, so the expression dat a[ 3] [ 6] really means(dat a[ 3] ) [ 6], i.e., the seventh
element of the array that is the fourth element of dat a. In short, the value yielded by the first application of the brackets is another
array, so the second application of the brackets gets an element from that secondary array.

We can play the same game with our Ar r ay 2D class by overloading oper at or [ ] to return an object of anew class, Ar r ay1D. We
can then overload oper at or[] againin Ar r ay 1Dto return an element in our original two-dimensional array:

t enpl at e<cl ass T>
class Array2D {
public:
class ArraylD {
public:
T& operator[](int index);
const T& operator[](int index) const;

H

ArraylD operator[](int index);
const ArraylD operator[](int index) const;

3
The following then becomes legal:
Array2D<f | oat > dat a(10, 20);

cout << data[3][6]; /1 fine

Here, dat a[ 3] yieldsan Arr ay 1D object and the oper at or [ ] invocation on that object yields the float in position (3, 6) of the
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original two-dimensional array.

Clients of the Ar r ay 2D class need not be aware of the presence of the Ar r ay 1D class. Objects of this|atter class stand for
one-dimensional array objects that, conceptually, do not exist for clients of Ar r ay2D. Such clients program asif they were using real,
live, honest-to-Allah two-dimensional arrays. It is of no concern to Ar r ay 2D clients that those objects must, in order to satisfy the
vagaries of C++, be syntactically compatible with one-dimensional arrays of other one-dimensional arrays.

Each Ar r ay 1D object stands for a one-dimensional array that is absent from the conceptual model used by clients of Ar r ay 2D.
Objectsthat stand for other objects are often called proxy objects, and the classes that give rise to proxy objects are often called proxy
classes. Inthisexample, Ar r ay1Disaproxy class. Itsinstances stand for one-dimensional arrays that, conceptually, do not exist.
(The terminology for proxy objects and classesis far from universal; objects of such classes are also sometimes known as surrogates.)

Distinguishing Reads from Writes viaoper at or [ ]

The use of proxies to implement classes whose instances act like multidimensional arrays is common, but proxy classes are more
flexible than that. Item 5, for example, shows how proxy classes can be employed to prevent single-argument constructors from being
used to perform unwanted type conversions. Of the varied uses of proxy classes, however, the most heralded is that of helping
distinguish reads from writes through oper ator [ ] .

Consider areference-counted string type that supportsoper at or [ ] . Such atypeisexamined in detail in Item 29. If the concepts
behind reference counting have dipped your mind, it would be a good idea to familiarize yourself with the materia in that Item now.

A string type supporting oper at or [ ] alows clients to write code like this:

String sl, s2; /1l a string-like class; the
/] use of proxies keeps this
/1l class fromconformng to
/1 the standard string
/'l interface

cout << si1[5]; /'l read sl
s2[5] ="x"; /Il wite s2
s1[3] = s2[8]; /'l wite sl1, read s2

Note that oper at or [ ] can be called in two different contexts: to read a character or to write a character. Reads are known as rvalue
usages; writes are known as lvalue usages. (The terms come from the field of compilers, where an lvalue goes on the left-hand side of
an assignment and an rvalue goes on the right-hand side.) In general, using an object as an Ivalue means using it such that it might be
modified, and using it as an rvalue means using it such that it cannot be modified.

We'd like to distinguish between lvalue and rvalue usage of oper at or [ ] because, especially for reference-counted data structures,
reads can be much less expensive to implement than writes. As Item 29 explains, writes of reference-counted objects may involve
copying an entire data structure, but reads never require more than the simple returning of avalue. Unfortunately, inside

oper at or[ ], thereis no way to determine the context in which the function was called; it is not possible to distinguish Ivalue usage
from rvalue usage within oper at or [ ] .

"But wait," you say, "we don't need to. We can overload oper at or [ ] onthe basis of its const ness, and that will allow usto
distinguish reads from writes." In other words, you suggest we solve our problem this way:

class String {

public:
const char& operator[](int index) const; [l for reads
char & operator[] (int index); [l for wites
b

Alas, thiswon't work. Compilers choose between const and non-const member functions by looking only at whether the object
invoking afunctionisconst . No consideration is given to the context in which a call is made. Hence:

String sl1, s2;
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cout << si[5]; /1 calls non-const operator[],
/!l because sl isn't const

s2[5] = "x"; /1 also calls non-const
/1 operator[]: s2 isn't const
s1[3] = s2[8]; /1 both calls are to non-const

/1 operator[], because both si
/1 and s2 are non-const objects

Overloading oper at or [ ], then, fails to distinguish reads from writes.

In ltem 29, we resigned ourselves to this unsatisfactory state of affairs and made the conservative assumption that all callsto

oper at or [ ] werefor writes. Thistime we shall not give up so easily. It may be impossible to distinguish Ivalue from rvalue usage
inside oper at or [ ], but we still want to do it. We will therefore find away. What fun islife if you allow yourself to be limited by
the possible?

Our approach is based on the fact that though it may be impossible to tell whether oper at or [ ] isbeing invoked in an lvalue or an
rvalue context from within oper at or [ ] , we can till treat reads differently from writes if we delay our |value-versus-rvalue actions
until we see how the result of oper at or [ ] isused. All we need isaway to postpone our decision on whether our object is being
read or written until after oper at or [ ] hasreturned. (Thisis an example of lazy evaluation — see Item 17.)

A proxy class alows usto buy the time we need, because we can modify oper at or [ ] to return aproxy for a string character instead
of astring character itself. We can then wait to see how the proxy isused. If it's read, we can belatedly treat the call to oper at or [ ]
asaread. If it'swritten, we must treat the call to oper at or [ ] asawrite.

We will see the code for thisin amoment, but first it isimportant to understand the proxies we'll be using. There are only three things
you can do with a proxy:

« Createit, i.e., specify which string character it standsfor.

o Useit asthetarget of an assignment, in which case you are really making an assignment to the string character it stands for.
When used in thisway, a proxy represents an lvalue use of the string on which oper at or [ ] wasinvoked.

o Useitinany other way. When used like this, a proxy represents an rvalue use of the string on which oper at or [ ] was
invoked.

Here are the class definitions for areference-counted St r i ng class using a proxy class to distinguish between Ivalue and rvalue
usagesof operator[]:

class String { /'l reference-counted strings;
public: /'l see ltem 29 for details
cl ass CharProxy { /'l proxies for string chars
publi c:
Char Proxy(String& str, int index); /] creation
Char Proxy& oper at or=(const Char Proxy& rhs); /1 lval ue
Char Proxy& operator=(char c); /'l uses
operator char() const; /1 rval ue
/'l use
private:
String& theString; /'l string this proxy pertains to
i nt charl ndex; /1l char within that string

/1l this proxy stands for

b

/1l continuation of String class
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const Char Proxy
operator[](int index) const; /1 for const Strings

Char Proxy operator[](int index); // for non-const Strings

friend class Char Proxy;

private:
RCPt r <Stri ngVval ue> val ue;
¥

Other than the addition of the Char Pr oxy class (which we'll examine below), the only difference between thisSt r i ng class and the
final St ri ng classin Item 29 isthat both oper at or [ ] functions now return Char Pr oxy objects. Clientsof St ri ng can

generally ignore this, however, and program asif the oper at or [ ] functions returned characters (or references to characters — see
Item 1) in the usual manner:

String sl, s2; /'l reference-counted strings
/1 using proxies

cout << si[5]; /1 still legal, still works
s2[5] = "x'; /1 also legal, also works
s1[3] = s2[8]; /1 of course it's |legal,

/'l of course it works
What's interesting is not that this works. What's interesting is how it works.

Consider first this statement:
cout << si[5];

Theexpression s1[ 5] yieldsaChar Pr oxy object. No output operator is defined for such objects, so your compilers labor to find an
implicit type conversion they can apply to make the call to oper at or << succeed (see Item 5). They find one: the implicit conversion

from Char Pr oxy to char declared inthe Char Pr oxy class. They automatically invoke this conversion operator, and the result is
that the string character represented by the Char Pr oxy isprinted. Thisis representative of the Char Pr oxy-to-char conversion
that takes place for al Char Pr oxy objects used as rvalues.

Lvalue usageis handled differently. Look again at

s2[5] = "'x";
As before, the expression s2[ 5] yieldsa Char Pr oxy object, but thistime that object is the target of an assignment. Which
assignment operator isinvoked? The target of the assignment isa Char Pr oxy, so the assignment operator that's called isin the
Char Pr oxy class. Thisis crucial, because inside a Char Pr oxy assignment operator, we know that the Char Pr oxy object being
assigned to is being used as an Ivalue. We therefore know that the string character for which the proxy standsis being used as an
Ivalue, and we must take whatever actions are necessary to implement Ivalue access for that character.
Similarly, the statement

s1[3] = s2[8];
calls the assignment operator for two Char Pr oxy objects, and inside that operator we know the object on the left is being used as an
Ivalue and the object on the right as an rvalue.
"Y eah, yeah, yeah," you grumble, "show me." Okay. Here'sthe codefor St ri ng'soper at or [ ] functions:

const String::CharProxy String::operator[](int index) const

{
}

return CharProxy(const_cast<String&(*this), index);
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String::CharProxy String::operator[](int index)
{

}

Each function just creates and returns a proxy for the requested character. No action is taken on the character itself: we defer such
action until we know whether the accessisfor aread or awrite.

return CharProxy(*this, index);

Note that theconst version of oper at or [ ] returnsaconst proxy. Because Char Pr oxy: : oper at or =isn'taconst member
function, such proxies can't be used as the target of assignments. Hence neither the proxy returned from the const version of

oper at or [ ] nor the character for which it stands may be used as an lvalue. Conveniently enough, that's exactly the behavior we
want for theconst version of operator|[].

Note alsotheuse of aconst _cast (seeltem 2) on*t hi s when creating the Char Pr oxy object that theconst oper at or [ ]

returns. That's necessary to satisfy the constraints of the Char Pr oxy constructor, which accepts only anon-const St ri ng. Casts
are usually worrisome, but in this case the Char Pr oxy object returned by oper at or [ ] isitself const , so thereisnorisk the
St r i ng containing the character to which the proxy refers will be modified.

Each proxy returned by an oper at or [ ] function remembers which string it pertains to and, within that string, the index of the
character it represents:

String:: CharProxy::CharProxy(String& str, int index)
theString(str), charlndex(index) {}
Conversion of aproxy to an rvalueis straightforward — we just return a copy of the character represented by the proxy:
String:: CharProxy: :operator char() const

{
}

If you've forgotten the relationship among a St r i ng object, itsval ue member, and the dat a member it points to, you can refresh
your memory by turning to Item 29. Because this function returns a character by value, and because C++ limits the use of such

by-value returns to rvalue contexts only, this conversion function can be used only in places where an rvalueislegal.

return theString. val ue->dat a[ char |l ndex] ;

We thus turn to implementation of Char Pr oxy's assignment operators, which is where we must deal with the fact that a character
represented by a proxy is being used as the target of an assignment, i.e., as an lvalue. We can implement Char Pr oxy's conventional
assignment operator asfollows:

String:: Char Proxy&

String:: Char Proxy: : operator=(const CharProxy& rhs)

{
/1 if the string is sharing a value with other String objects,
/1l break off a separate copy of the value for this string only
if (theString.value->isShared()) {
theString. value = new StringVal ue(theString. val ue->dat a) ;
}
/1 now make the assignnment: assign the value of the char
/!l represented by rhs to the char represented by *this
t heString. val ue- >dat a[ char |l ndex] =
rhs.theString. val ue->dat a[ r hs. char | ndex] ;
return *this;
}

If you compare this with the implementation of the non-const St ri ng::oper at or in Item 29, you'll see that they are strikingly
similar. Thisisto be expected. In Item 29, we pessimistically assumed that all invocations of the non-const oper at or[] were
writes, so we treated them as such. Here, we moved the code implementing awrite into Char Pr oxy's assignment operators, and that
allows us to avoid paying for awrite when the non-const oper at or [ ] isused only in an rvalue context. Note, by the way, that
this function requires accessto St r i ng's private datamember val ue. That'swhy Char Pr oxy isdeclared afriend in the earlier
class definition for St r i ng.
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The second Char Pr oxy assignment operator is amost identical:

String:: CharProxy& String:: Char Proxy: :operator=(char c)
{
if (theString.val ue->isShared()) {

theString. value = new StringVal ue(theString. val ue->data);

}

t heString. val ue->dat a[ char | ndex] = c;

return *this;

}

As an accomplished software engineer, you would, of course, banish the code duplication present in these two assignment operators to
aprivate Char Pr oxy member function that both would call. Aren't you the modular one?

Limitations

The use of aproxy classis anice way to distinguish Ivalue and rvalue usage of oper at or [ ] , but the technigue is not without its
drawbacks. We'd like proxy objects to seamlessly replace the objects they stand for, but thisideal is difficult to achieve. That's because
objects are used as lvalues in contexts other than just assignment, and using proxies in such contexts usually yields behavior different
from using real objects.

Consider again the code fragment from Item 29 that motivated our decision to add a shareability flag to each St r i ngVal ue object.
If String:operator[] returnsaChar Pr oxy instead of achar &, that code will no longer compile:

String s1 = "Hell o";

char *p = &s1[1]; /'l error!
Theexpression s1[ 1] returnsaChar Pr oxy, so the type of the expression on the right-hand side of the"="is Char Pr oxy*. There
isno conversion from aChar Pr oxy* toachar *, so theinitialization of p failsto compile. In general, taking the address of a proxy
yields a different type of pointer than does taking the address of areal object.
To eliminate this difficulty, you'll need to overload the address-of operators for the Char Pr oxy class:

class String {
public:

cl ass Char Proxy {
public:

char * operator&();
const char * operatoré&() const;

—_
—

These functions are easy to implement. The const function just returns a pointer to aconst version of the character represented by
the proxy:

const char * String::CharProxy::operator&) const

{
}

The non-const function is abit more work, because it returns a pointer to a character that may be modified. Thisis analogous to the
behavior of the non-const version of St ri ng::oper at or[] inltem 29, and the implementation is equally analogous:

char * String:: CharProxy::operator&)

return & theString. val ue->dat a[ charl ndex]);

/1 make sure the character to which this function returns
/!l a pointer isn't shared by any other String objects
if (theString.value->isShared()) {

theString. value = new StringVal ue(theString. val ue->data);
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}
/1 we don't know how | ong the pointer this function
/1l returns will be kept by clients, so the StringVal ue

/1 object can never be shared
t heStri ng. val ue- >nar kUnshar eabl e() ;

return & theString. val ue->dat a[ charl ndex]);

}

Much of this code is common to other Char Pr oxy member functions, so | know you'd encapsulate it in a private member function
that all would call.

A second difference between char s and the Char Pr oxy s that stand for them becomes apparent if we have atemplate for
reference-counted arrays that use proxy classes to distinguish Ivalue and rvalue invocations of oper at or [ ] :

t enpl at e<cl ass T> /'l reference-counted array
class Array { /] using proxies
public:

cl ass Proxy {

public:

Proxy(Array<T>& array, int index);
Proxy& operator=(const T& rhs);
operator T() const;

-

const Proxy operator[](int index) const;
Proxy operator[](int index);

-

Consider how these arrays might be used:
Array<int> intArray;

intArray[5] = 22; [l fine
intArray[5] += 5; /! error!
++i nt Array[ 5] ; /! error!

As expected, use of oper at or [ ] asthetarget of asimple assignment succeeds, but use of oper at or [ ] ontheleft-hand side of a
call to oper at or += or oper at or ++ fails. That's because oper at or [ ] returnsaproxy, and thereisno oper at or += or

oper at or ++ for Pr oxy objects. A similar situation exists for other operators that require Ivalues, including oper at or * =,

oper at or <<=, oper at or - - , etc. If you want these operators to work with oper at or [ ] functionsthat return proxies, you must
define each of these functions for the Ar r ay<T>::Pr oxy class. That'salot of work, and you probably don't want to do it.
Unfortunately, you either do the work or you do without. Them's the breaks.

A related problem has to do with invoking member functions on real objects through proxies. To be blunt about it, you can't. For
example, suppose wed like to work with reference-counted arrays of rational numbers. We could define aclassRat i onal and then
usethe Ar r ay template we just saw:

class Rational {

public:
Rational (i nt nunmerator = 0, int denominator = 1);
int nunerator() const;
i nt denoninator() const;
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Array<Rational > array;
Thisis how we'd expect to be able to use such arrays, but, alas, we'd be disappointed:
cout << array[4].nunerator(); /'l error!
i nt denom = array[22].denom nator(); /'l error!

By now the difficulty is predictable; oper at or [ ] returns aproxy for arational number, not an actual Rat i onal object. But the
numer at or and denom nat or member functions exist only for Rat i onal s, not their proxies. Hence the complaints by your
compilers. To make proxies behave like the objects they stand for, you must overload each function applicable to the real objects so it
applies to proxies, too.

Y et another situation in which proxies fail to replace real objectsiswhen being passed to functions that take referencesto non-const
objects:

voi d swap(char& a, char& b); /'l swaps the value of a and b
String s = "+C+"; /'l oops, should be "C++"
swap(s[0], s[1]); /1l this should fix the

/1 problem but it won't

/'l conpile

String::operator[] retunsaChar Pr oxy, but swap demandsthat its arguments be of type char & A Char Pr oxy may be
implicitly converted into achar , but there is no conversion function to achar & Furthermore, the char to which it may be
converted can't be bound to swap's char & parameters, because that char isatemporary object (it'soper at or char 'sreturn
value) and, as Item 19 explains, there are good reasons for refusing to bind temporary objectsto non-const reference parameters.

A final way in which proxiesfail to seamlessly replace real objects has to do with implicit type conversions. When a proxy object is
implicitly converted into the real object it stands for, a user-defined conversion function isinvoked. For instance, a Char Pr oxy can
be converted into the char it stands for by calling oper at or char . Asltem 5 explains, compilers may use only one user-defined

conversion function when converting a parameter at a call site into the type needed by the corresponding function parameter. Asa
result, it is possible for function calls that succeed when passed real objects to fail when passed proxies. For example, suppose we
haveaTVSt at i on class and afunction, wat chTV:

class TVStation {
publ i c:
TVStation(int channel);

3
voi d wat chTV(const TVStati on& station, float hoursToWatch);

Thanksto implicit type conversion fromi nt to TVSt at i on (see ltem 5), we could then do this:

wat chTV(10, 2.5); /! watch channel 10 for
/1l 2.5 hours

Using the template for reference-counted arrays that use proxy classes to distinguish lvalue and rvalue invocations of operator[],
however, we could not do this:

Array<int> intArray,;
intArray[ 4] = 10;

wat chTV(int Array[4], 2.5); /1 error! no conversion
[l fromProxy<int> to
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[/ TVStation

Given the problems that accompany implicit type conversions, it's hard to get too choked up about this. In fact, a better design for the
TVSt at i on classwould declare its constructor expl i ci t , in which case even thefirst call towat chTV would fail to compile. For
all the details on implicit type conversions and how expl i ci t affectsthem, see Item 5.

Evauation

Proxy classes allow you to achieve some types of behavior that are otherwise difficult or impossible to implement. Multidimensional
arrays are one example, lvalue/rvalue differentiation is a second, suppression of implicit conversions (see Item 5) is athird.

At the sametime, proxy classes have disadvantages. As function return values, proxy objects are temporaries (see [tem 19), so they
must be created and destroyed. That's not free, though the cost may be more than recouped through their ability to distinguish write
operations from read operations. The very existence of proxy classes increases the complexity of software systems that employ them,
because additional classes make things harder to design, implement, understand, and maintain, not easier.

Finally, shifting from a class that works with real objects to a class that works with proxies often changes the semantics of the class,
because proxy objects usually exhibit behavior that is subtly different from that of the real objects they represent. Sometimes this
makes proxies a poor choice when designing a system, but in many cases thereislittle need for the operations that would make the
presence of proxies apparent to clients. For instance, few clients will want to take the address of an Ar r ay 1D object in the
two-dimensional array example we saw at the beginning of this Item, and there isn't much chance that an Ar r ayl ndex object (see
Item 5) would be passed to a function expecting a different type. In many cases, proxies can stand in for real objects perfectly
acceptably. When they can, it is often the case that nothing else will do.

Back to Item 30: Proxy classes

Continue to Miscellany

Item 31: Making functions virtual with respect to more than one object.

Sometimes, to borrow a phrase from Jacqueline Susann, once is not enough. Suppose, for example, you're bucking for one of those
high-profile, high-prestige, high-paying programming jobs at that famous software company in Redmond, Washington — by which of
course | mean Nintendo. To bring yourself to the attention of Nintendo's management, you might decide to write avideo game. Such a
game might take place in outer space and involve space ships, space stations, and asteroids.

Asthe ships, stations, and asteroids whiz around in your artificial world, they naturally run the risk of colliding with one another. Let's
assume the rules for such collisions are as follows:

« If aship and astation collide at low velocity, the ship docks at the station. Otherwise the ship and the station sustain damage
that's proportional to the speed at which they collide.

« If aship and aship or a station and a station collide, both participants in the collision sustain damage that's proportional to the
speed at which they hit.

« If asmall asteroid collides with a ship or a station, the asteroid is destroyed. If it'sabig asteroid, the ship or the station is
destroyed.

« If an asteroid collides with another asteroid, both break into pieces and scatter little baby asteroidsin all directions.

Thismay sound like a dull game, but it suffices for our purpose here, which isto consider how to structure the C++ code that handles
collisions between objects.

We begin by noting that ships, stations, and asteroids share some common features. If nothing else, they're all in motion, so they all
have a velocity that describes that motion. Given this commonality, it is natural to define a base class from which they al inherit. In
practice, such aclassis amost invariably an abstract base class, and, if you heed the warning | givein Item 33, base classes are always
abstract. The hierarchy might therefore look like this:

/.-"

‘M._S_':_'a'is f'f'_:;' @?i"_m_maf'_n___f 'k,___‘!f"'ﬂ‘)‘:d__ ' Cipa l:eﬁhli:} @aw&aﬁ?‘:} i-ﬁ.ilﬂ rnb
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GameObject

SpaceStation

SpaceShip

GameObject

SpaceShip SpaceStation

GameObject

GameObject

SpaceShip

SpaceShip

class Gameoject { ... };

cl ass SpaceShi p: public GanmeCoject { ... };

cl ass SpaceStation: public GaneCbject { ... };
class Asteroid: public Gamrebject { ... };

Now, suppose you're deep in the bowels of your program, writing the code to check for and handle object collisions. Y ou might come
up with afunction that looks something like this:
voi d checkFor Col |'i si on( GaneQbj ect & obj ect 1,
Game(hj ect & obj ect 2)

{
if (theyJustCollided(objectl, object2)) {
processCol | i si on(obj ect1l, object?2);
}
el se {
}
}
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This is where the programming challenge becomes apparent. When you call pr ocessCol | i si on, you know that obj ect 1 and
obj ect 2 just collided, and you know that what happensin that collision depends on what obj ect 1 really isand what obj ect 2
realy is, but you don't know what kinds of objectsthey really are; all you know is that they're both GaneObj ect s. If the collision
processing depended only on the dynamic type of obj ect 1, you could make pr ocessCol | i si on virtual in GaneCbj ect and
call obj ect 1. processCol |i si on( obj ect 2) . You could do the same thing with obj ect 2 if the details of the collision
depended only on its dynamic type. What happensin the collision, however, depends on both their dynamic types. A function call
that's virtual on only one object, you see, is not enough.

What you need is akind of function whose behavior is somehow virtual on the types of more than one object. C++ offers no such
function. Nevertheless, you still have to implement the behavior required above. The question, then, is how you are going to do it.

One possibility isto scrap the use of C++ and choose another programming language. Y ou could turn to CLOS, for example, the
Common Lisp Object System. CLOS supports what is possibly the most general object-oriented function-invocation mechanism one
can imagine: multi-methods. A multi-method is a function that's virtual on as many parameters as you'd like, and CLOS goes even
further by giving you substantial control over how calls to overloaded multi-methods are resolved.

Let us assume, however, that you must implement your game in C++ — that you must come up with your own way of implementing
what is commonly referred to as double-dispatching. (The name comes from the object-oriented programming community, where
what C++ programmers know as a virtual function call istermed a"message dispatch.” A call that's virtual on two parametersis
implemented through a "double dispatch.” The generalization of this— afunction acting virtual on several parameters — is called
multiple dispatch.) There are several approaches you might consider. None is without its disadvantages, but that shouldn't surprise
you. C++ offers no direct support for double-dispatching, so you must yourself do the work compilers do when they implement virtual
functions (see Item 24). If that were easy to do, we'd probably all be doing it ourselves and ssimply programming in C. We aren't and

we don't, so fasten your seat belts, it's going to be a bumpy ride.
Using Virtual Functionsand RTTI

Virtua functions implement a single dispatch; that's half of what we need; and compilers do virtual functions for us, so we begin by
declaring avirtual function col | i de in GameCbj ect . Thisfunction is overridden in the derived classesin the usual manner:

cl ass Ganmeoj ect {

public:
virtual void collide(GaneObject& ot herChject) = 0;
1
cl ass SpaceShi p: public GaneQbject {
public:
virtual void collide(Ganebject& ot her vj ect);
1

Here I'm showing only the derived class SpaceShi p, but SpaceSt at i on and Ast er oi d are handled in exactly the same manner.

The most common approach to double-dispatching returns us to the unforgiving world of virtual function emulation via chains of
i f-t hen-el ses. Inthisharshworld, wefirst discover the real type of ot her Cbj ect , then wetest it against all the possibilities:

/1 if we collide with an object of unknown type, we
/!l throw an exception of this type:
class Col l'i si onWt hUnknownQbj ect {
public:
Col l'i si onW t hUnknownQbj ect ( GareCbj ect & what WeHi t) ;

1
voi d SpaceShi p:: collide(GaneCbj ect & ot her Qbj ect)
{
const type_info& objectType = typeid(otherject);

i f (objectType == typei d(SpaceShip)) {
SpaceShi p& ss = static_cast <SpaceShi p&>( ot her Qbj ect) ;
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process a SpaceShi p- SpaceShip col li sion;

}

else if (objectType == typei d(SpaceStation)) {
SpaceStati on& ss =
static_cast <SpaceSt ati on&>(ot her Qbj ect) ;

process a SpaceShi p- SpaceStation colli sion;

}

else if (objectType == typeid(Asteroid)) {
Asteroi d& a = static_cast <Asteroi d&>( ot her bj ect);

process a SpaceShi p-Asteroid collision;

}

el se {
throw Col I'i si onW t hUnknownCbj ect (ot her hj ect) ;

}
}

Notice how we need to determine the type of only one of the objects involved in the collision. The other objectis*t hi s, and itstype
is determined by the virtual function mechanism. We'reinside a Space Shi p member function, so *t hi s must be aSpaceShi p
object. Thus we only have to figure out the real type of ot her Qhj ect .

There's nothing complicated about this code. It's easy to write. It's even easy to make work. That's one of the reasons RTTI is
worrisome: it looks harmless. The true danger in this codeis hinted at only by thefinal el se clause and the exception that's thrown
there.

We've pretty much bidden adios to encapsulation, because each col | i de function must be aware of each of its sibling classes, i.e.,
those classes that inherit from GameCbj ect . In particular, if anew type of object — anew class— is added to the game, we must
update each RTTl-based i f -t hen-el se chainin the program that might encounter the new object type. If we forget even asingle
one, the program will have a bug, and the bug will not be obvious. Furthermore, compilers arein no position to help us detect such an
oversight, because they have no ideawhat we're doing (see also Item E39).

Thiskind of type-based programming has along history in C, and one of the things we know about it isthat it yields programs that are
essentially unmaintainable. Enhancement of such programs eventually becomes unthinkable. Thisisthe primary reason why virtua
functions were invented in the first place: to shift the burden of generating and maintaining type-based function calls from
programmers to compilers. When we employ RTTI to implement double-dispatching, we are harking back to the bad old days.

The techniques of the bad old days led to errorsin C, and they'll lead to errorsin C++, too. In recognition of our human frailty, we've
included afina el se clauseinthecol | i de function, a clause where control winds up if we hit an object we don't know about. Such
asituation is, in principle, impossible, but where were our principles when we decided to use RTTI? There are various ways to handle
such unanticipated interactions, but noneis very satisfying. In this case, we've chosen to throw an exception, but it's not clear how our
callers can hope to handle the error any better than we can, since we've just run into something we didn't know existed.

Using Virtual Functions Only

Thereisaway to minimize the risks inherent in an RTTI approach to implementing double-dispatching, but before we look at that, it's
convenient to see how to attack the problem using nothing but virtual functions. That strategy begins with the same basic structure as
the RTTI approach. Thecol | i de function is declared virtual in GaneChj ect and isredefined in each derived class. In addition,
col I i de isoverloaded in each class, one overloading for each derived classin the hierarchy:

cl ass SpaceShi p; /1 forward decl arations
cl ass SpaceStati on;
cl ass Asteroid,

cl ass Ganmeoj ect {
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public:
virtual void collide(Ganebject & ot her Cbj ect) = 0O;
virtual void collide(SpaceShip& ot her Cbj ect) = 0O;
virtual void collide(SpaceStation& ot her Cbj ect) = 0;
virtual void collide(Asteroid& ot her obj ect) = 0;

i

cl ass SpaceShi p: public Gane(hj ect {

public:
virtual void collide(Ganebject & ot her Qbj ect) ;
virtual void collide(SpaceShip& ot her Qbj ect) ;
virtual void collide(SpaceStation& ot her Obj ect) ;
virtual void collide(Asteroid& ot her obj ect) ;

b

The basic ideais to implement double-dispatching as two single dispatches, i.e., astwo separate virtual function calls: the first
determines the dynamic type of the first object, the second determines that of the second object. As before, the first virtual call isto the

col | i de functiontaking aGanme(Chj ect & parameter. That function's implementation now becomes startlingly simple:

voi d SpaceShi p: : col lide(Ganelbj ect & ot her Gbj ect)
{

}

At first glance, this appearsto be nothing more than arecursive call to col | i de with the order of the parameters reversed, i.e., with
ot her Obj ect becoming the object calling the member function and * t hi s becoming the function's parameter. Glance again,
however, because thisis not arecursive call. Asyou know, compilers figure out which of aset of functionsto call on the basis of the
static types of the arguments passed to the function. In this case, four different col | i de functions could be called, but the one chosen
is based on the static type of *t hi s. What isthat static type? Being inside a member function of the class SpaceShi p, *t hi s must
be of type SpaceShi p. Thecall isthereforetothecol | i de functiontaking aSpaceShi p&, notthecol |'i de function taking a
Gameoj ect &

ot her Qbj ect.collide(*this);

All thecol | i de functions are virtual, so the call inside SpaceShi p::col | i de resolvesto the implementation of col | i de
corresponding to the real type of ot her Qbj ect . Inside that implementation of col | i de, thereal types of both objects are known,
because the left-hand object is* t hi s (and therefore has as its type the class implementing the member function) and the right-hand
object'sreal typeis SpaceShi p, the same as the declared type of the parameter.

All this may be clearer when you see the implementations of the other col | i de functionsin SpaceShi p:
voi d SpaceShi p:: collide(SpaceShi p& ot her hj ect)

{

process a SpaceShi p- SpaceShip col li sion;
}
voi d SpaceShi p::col lide(SpaceStati on& ot her Cbj ect)
{

process a SpaceShi p- SpaceStation colli sion;
}
voi d SpaceShi p::collide(Asteroi d& ot her Obj ect)
{

process a SpaceShi p-Asteroid collision;
}

Asyou can see, there's no muss, no fuss, no RTTI, no need to throw exceptions for unexpected object types. There can be no
unexpected object types — that's the whole point of using virtua functions. In fact, wereit not for its fatal flaw, this would be the
perfect solution to the double-dispatching problem.
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The flaw isoneit shares with the RTTI approach we saw earlier: each class must know about its siblings. As new classes are added,
the code must be updated. However, the way in which the code must be updated is different in this case. True, there are no

i f-t hen-el sesto modify, but there is something that is often worse: each class definition must be amended to include a new virtua
function. If, for example, you decide to add anew class Sat el | i t e (inheriting from GaneCbj ect ) to your game, you'd have to
add anew col | i de function to each of the existing classes in the program.

Modifying existing classes is something you are frequently in no position to do. If, instead of writing the entire video game yourself,
you started with an off-the-shelf class library comprising a video game application framework, you might not have write access to the
Gane(bj ect class or the framework classes derived fromit. In that case, adding new member functions, virtual or otherwise, is not
an option. Alternatively, you may have physical access to the classes requiring modification, but you may not have practical access.
For example, suppose you were hired by Nintendo and were put to work on programs using alibrary containing GaneQbj ect and
other useful classes. Surely you wouldn't be the only one using that library, and Nintendo would probably be less than thrilled about
recompiling every application using that library each time you decided to add a new type of object to your program. In practice,
libraries in wide use are modified only rarely, because the cost of recompiling everything using those libraries istoo great. (See Iltem
E34 for information on how to design libraries that minimize compilation dependencies.)

The long and short of it isif you need to implement double-dispatching in your program, your best recourse is to modify your design
to eliminate the need. Failing that, the virtual function approach is safer than the RTTI strategy, but it constrains the extensibility of
your system to match that of your ability to edit header files. The RTTI approach, on the other hand, makes no recompilation demands,
but, if implemented as shown above, it generally leads to software that is unmaintainable. Y ou pays your money and you takes your
chances.

Emulating Virtual Function Tables

There is away to improve those chances. Y ou may recall from Item 24 that compilers typically implement virtual functions by
creating an array of function pointers (the vtbl) and then indexing into that array when avirtual function is called. Using a vtbl
eliminates the need for compilersto perform chainsof i f -t hen-el se-like computations, and it allows compilers to generate the
same code at all virtual function call sites: determine the correct vtbl index, then call the function pointed to at that position in the vtbl.

There is no reason you can't do this yourself. If you do, you not only make your RTTI-based code more efficient (indexing into an
array and following afunction pointer is almost always more efficient than running through aseriesof i f -t hen-el se tests, and it
generates less code, too), you also isolate the use of RTTI to asingle location: the place where your array of function pointersis
initialized. | should mention that the meek may inherit the earth, but the meek of heart may wish to take afew deep breaths before
reading what follows.

We begin by making some modifications to the functions in the GamreChj ect hierarchy:

cl ass Ganmeoj ect {
public:
virtual void collide(GaneCbject& ot herObject) = O;

.

cl ass SpaceShi p: public GaneQbj ect {

public:
virtual void collide(Ganebject& ot her hj ect);
virtual void hitSpaceShi p( SpaceShi p& ot her Qbj ect) ;
virtual void hitSpaceStation(SpaceStation& ot her Qbject);
virtual void hitAsteroid(Asteroi d& ot herobject);

—

voi d SpaceShi p: : hi t SpaceShi p( SpaceShi p& ot her Qbj ect)
{

}

voi d SpaceShi p: : hit SpaceSt ati on( SpaceSt ati on& ot her Obj ect)
{

}

process a SpaceShi p- SpaceShip col li sion;

process a SpaceShi p- SpaceStation colli sion;
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voi d SpaceShi p: : hit Ast er oi d( Ast er oi d& ot her Qbj ect)
{

}

Like the RTTI-based hierarchy we started out with, the GamreCbj ect class contains only one function for processing collisions, the
one that performs the first of the two necessary dispatches. Like the virtual-function-based hierarchy we saw later, each kind of
interaction is encapsulated in a separate function, though in this case the functions have different names instead of sharing the name
col I i de. Thereisareason for this abandonment of overloading, and we shall see it soon. For the time being, note that the design
above contains everything we need except an implementation for SpaceShi p::col | i de; that's where the various hi t functions
will be invoked. As before, once we successfully implement the SpaceShi p class, the SpaceSt at i on and Ast er oi d classes
will follow suit.

process a SpaceShi p-Asteroid collision;

Inside SpaceShi p::col | i de, we need away to map the dynamic type of the parameter ot her Cbj ect to amember function

pointer that pointsto the appropriate collision-handling function. An easy way to do thisisto create an associative array that, given a
class name, yields the appropriate member function pointer. It's possible to implement col | i de using such an associative array
directly, but it'sabit easier to understand what's going on if we add an intervening function, | ookup, that takes a GameCbj ect and
returns the appropriate member function pointer. That is, you pass| ookup aGaneQbj ect , and it returns a pointer to the member
function to call when you collide with something of that Ganme(Cbj ect 'stype.

Here's the declaration of | ookup:

cl ass SpaceShi p: public GaneQbj ect {
private:
typedef void (SpaceShip::*HitFunctionPtr)(GaneQbject &) ;

static Hi tFunctionPtr | ookup(const GanmeCbj ect & what WeHi t) ;

.

The syntax of function pointersis never very pretty, and for member function pointersit's worse than usual, so we'vet ypedef ed
Hi t Functi onPt r to be shorthand for a pointer to a member function of SpaceShi p that takesa Gamehj ect & and returns
nothing.

Oncewevegot | ookup, implementation of col | i de becomesthe proverbial piece of cake:
voi d SpaceShi p:: col li de( Gane(bj ect & ot her Obj ect)

{
Hi t FunctionPtr hfp =
| ookup( ot her Qbj ect) ; [/ find the function to call
if (hfp) { [/ if a function was found
(t hi s->*hf p) (ot her Qbj ect); [/ call it
}
el se {
throw Col i si onW t hUnknownCbj ect (ot her hj ect ) ;
}
}

Provided we've kept the contents of our associative array in sync with the class hierarchy under GaneQbj ect , | ookup must always
find avalid function pointer for the object we passit. People are people, however, and mistakes have been known to creep into even
the most carefully crafted software systems. That's why we still check to make sure avalid pointer was returned from | ookup, and
that's why we still throw an exception if the impossible occurs and the lookup fails.

All that remains now is the implementation of | ookup. Given an associative array that maps from object types to member function
pointers, the lookup itself is easy, but creating, initializing, and destroying the associative array is an interesting problem of its own.

Such an array should be created and initialized before it's used, and it should be destroyed when it's no longer needed. We could use
newand del et e to create and destroy the array manually, but that would be error-prone: how could we guarantee the array wasn't
used before we got around to initializing it? A better solution is to have compilers automate the process, and we can do that by making
the associative array staticin | ookup. That way it will be created and initialized the first timel ookup iscalled, and it will be
automatically destroyed sometime after mai n is exited (see Item E47).
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Furthermore, we can use the map template from the Standard Template Library (see Item 35) as the associative array, because that's
what anap is:
cl ass SpaceShi p: public GaneQbj ect {
private:
typedef void (SpaceShip::*HitFunctionPtr)(GaneQbject &) ;
t ypedef map<string, HitFunctionPtr> HtMp;

1
SpaceShi p: : Hi t FunctionPtr

SpaceShi p: : | ookup(const GaneObj ect & what WeHi t)

{
static H tMap collisionMap;

}

Here, col | i si onMap isour associative array. It maps the name of aclass (asast ri ng object) to aSpaceShi p member function
pointer. Because map<stri ng, Hit Functi onPt r > isquite amouthful, we use atypedef to make it easier to swallow. (For fun,
try writing the declaration of col | i si onMap without usingtheH t Map and Hi t Funct i onPt r typedefs. Most people will want
to do this only once.)

Givencol | i si onMap, theimplementation of | ookup israther anticlimactic. That's because searching for something is an
operation directly supported by the map class, and the one member function we can always (portably) call on the result of at ypei d
invocation is nane (which, predictablyll, yields the name of the object's dynamic type). To implement | ookup, then, we just find
theentry incol | i si onMap corresponding to the dynamic type of | ookup's argument.

The codefor | ookup isstraightforward, but if you're not familiar with the Standard Template Library (again, see Item 35), it may not
seem that way. Don't worry. The comments in the function explain what's going on.

SpaceShi p: : Hi t FunctionPtr

SpaceShi p: : | ookup(const GaneObj ect & what WeHi t)

{

static H tMap colli si onMap; /1 we'll see howto
/1l initialize this bel ow

/1 1ook up the collision-processing function for the type
/1 of whatWeHit. The value returned is a pointer-1like
/1 object called an "iterator" (see ltem 35).
Hi t Map::iterator mapEntry=
col lisionMap. find(typeid(whatWeHit).nane());

/1 mapEntry == collisionMap.end() if the | ookup fail ed,
/1l this is standard map behavior. Again, see |tem 35.
if (mapEntry == collisionMap.end()) return O;

/1l 1f we get here, the search succeeded. nmapEntry

/1l points to a conplete map entry, which is a

/1l (string, HtFunctionPtr) pair. W want only the
/1l second part of the pair, so that's what we return.
return (*mapEntry). second,

}

The final statement in the function returns ( * mapEnt r y) . second instead of the more conventional mapEnt r y- >second in
order to satisfy the vagaries of the STL. For details, see page 96.

Initializing Emulated Virtual Function Tables

Which brings usto the initialization of col | i si onMap. We'd like to say something like this,

/1 An incorrect inplenentation
SpaceShi p: : Hi t FunctionPtr
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SpaceShi p: : | ookup(const Ganme(Obj ect & what WeHi t)

{
static H tMap col |l isionMap;
col l'i si onMap[ " SpaceShi p"] = &hit SpaceShi p;
col |l i si onMap[ " SpaceStation"] = &hit SpaceStati on;
col li sionMap[ "Asteroid"] = &hitAsteroid,
}

but this inserts the member function pointersinto collisionMap each timel ookup iscalled, and that's needlessly inefficient. In
addition, this won't compile, but that's a secondary problem we'll address shortly.

What we need now is away to put the member function pointersintocol | i si onMap only once— whencol | i si onMap is
created. That's easy enough to accomplish; we just write a private static member function calledi niti al i zeCol I i si onMap to
create and initialize our map, thenweinitializecol | i si onMap withi niti al i zeCol | i si onMap'sreturn value:

cl ass SpaceShi p: public GaneQbj ect {
private:
static HtMap initializeCollisionMap();

b

SpaceShi p: : Hi t FunctionPtr
SpaceShi p: : | ookup(const Gane(bj ect & what WeHi t)

{
static HtMap collisionMap = initializeCollisionMap();

}

But this means we may have to pay the cost of copying the map object returned fromi ni ti al i zeCol | i si onMap into

col l'i si onMVap (seeltems 19 and 20 ). We'd prefer not to do that. We wouldn't haveto pay ifi niti al i zeCol | i si onMap
returned a pointer, but then we'd have to worry about making sure the map object the pointer pointed to was destroyed at an
appropriate time.

Fortunately, there'saway for usto haveit all. Wecanturncol | i si onMap into a smart pointer (see Item 28) that automatically
deletes what it points to when the pointer itself is destroyed. In fact, the standard C++ library contains atemplate, aut o_pt r, for just
such asmart pointer (see ltem 9). By making col | i si onMap astaticaut o_ptr inl ookup, we can have
initializeCollisionMp returnapointer toaninitialized map object, yet never have to worry about a resource leak; the map
towhichcol |'i si onMap pointswill be automatically destroyed when col | i si onMap is. Thus:

cl ass SpaceShi p: public GaneQbj ect {

private:
static HtMap * initializeCollisionMap();

H

SpaceShi p: : Hi t FunctionPtr
SpaceShi p: : | ookup(const Gane(bj ect & what WeHi t)

{
static auto_ptr<Hit Map>

collisionMap(initializeCollisionMap());
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The clearest way toimplementi ni ti al i zeCol | i si onMap would seem to be this,
SpaceShi p:: H t Map * SpaceShip::initializeCollisionMap()

{
H t Map *phm = new Hi t Map;
(*phm [ " SpaceShi p"] = &hit SpaceShi p;
(*phm [ " SpaceStation"] = &hitSpaceStation;
(*phm ["Asteroi d'] = &hitAsteroid,
return phm

}

but as | noted earlier, thiswon't compile. That's becausea Hi t Map is declared to hold pointers to member functions that all take the
same type of argument, namely Ganmebj ect . But hi t SpaceShi p takesa SpaceShi p, hi t SpaceSt at i on takesa
SpaceSt ati on, and, hi t Ast er oi d takesan Ast er oi d. Even though SpaceShi p, SpaceSt at i on, and Ast er oi d can all
be implicitly converted to GaneQbj ect , thereis no such conversion for pointers to functions taking these argument types.

To placate your compilers, you might be tempted to employ r ei nt er pr et _cast s(see ltem 2), which are generally the casts of
choice when converting between function pointer types:

/1 A bad idea...

SpaceShi p: : H t Map * SpaceShip::initializeCollisionMp()

{
H t Map *phm = new Hi t Map;

(*phm) [ " SpaceShi p"] =
reinterpret_cast<HitFunctionPtr>(&hitSpaceShip);

(*phm [ " SpaceStation"] =
reinterpret_cast<HitFunctionPtr>(&hitSpaceStation);

(*phm ["Asteroid"] =
reinterpret _cast<HitFunctionPtr>(&hitAsteroid);

return phm
}

Thiswill compile, but it's abad idea. It entails doing something you should never do: lying to your compilers. Telling them that

hi t SpaceShi p, hit SpaceSt ati on,and hi t Ast er oi d are functions expecting aGaneCbj ect argument issimply not true.
hi t SpaceShi p expectsaSpaceShi p, hit SpaceSt ati on expectsaSpaceSt ati on,andhi t Ast er oi d expectsan

Ast er oi d. The casts say otherwise. The castslie.

More than morality is on the line here. Compilers don't like to be lied to, and they often find away to exact revenge when they
discover they've been deceived. In this case, they're likely to get back at you by generating bad code for functions you call through

* phmin cases where GaneQbj ect 's derived classes employ multiple inheritance or have virtual base classes. In other words, if
SpaceSt ati on, SpaceShi p, or Ast er oi d had other base classes (in addition to GameCbj ect ), you'd probably find that your
callsto collision-processing functionsin col | i de would behave quite rudely.

Consider again the A-B-C-D inheritance hierarchy and the possible object layout for a D object that is described in Item 24:
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Each of the four class partsin a D object has a different address. Thisisimportant, because even though pointers and references
behave differently (see Item 1), compilerstypically implement references by using pointersin the generated code. Thus,
pass-by-reference is typically implemented by passing a pointer to an object. When an object with multiple base classes (such asaD
object) is passed by reference, it is crucia that compilers pass the correct address — the one corresponding to the declared type of the
parameter in the function being called.

But what if you've lied to your compilers and told them your function expects a GanmeQbj ect wheniit realy expectsa SpaceShi p
or aSpacesSt at i on? Then they'll pass the wrong address when you call the function, and the resulting runtime carnage will
probably be gruesome. It will also be very difficult to determine the cause of the problem. There are good reasons why casting is
discouraged. Thisis one of them.

Okay, so casting is out. Fine. But the type mismatch between the function pointersa Hi t Map iswilling to contain and the pointers to
the hi t SpaceShi p, hi t SpaceSt ati on, and hi t Ast er oi d functions remains. There is only one way to resolve the conflict:
change the types of the functions so they all take GameCbj ect arguments:

cl ass Gamebj ect { /1 this is unchanged

public:
virtual void collide(GaneQbject& ot herChject) = 0;

3

cl ass SpaceShi p: public GaneQbj ect {

public:
virtual void collide(Ganebject& ot her vj ect);
/1l these functions now all take a Gane(Cbhj ect paraneter
virtual void hitSpaceShi p(Ganmehj ect & spaceShi p);
virtual void hitSpaceStation(GaneQbj ect & spaceStation);
virtual void hitAsteroid(GaneCbject& asteroid);

1

Our solution to the double-dispatching problem that was based on virtual functions overloaded the function namecol | i de. Now we
arein a position to understand why we didn't follow suit here — why we decided to use an associative array of member function
pointersinstead. All the hi t functions take the same parameter type, so we must give them different names.
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Now we canwritei nitializeCollisi onMap theway we awayswanted to:
SpaceShip:: H tMap * SpaceShip::initializeCollisionMap()

{
H t Map *phm = new Hi t Map;
(*phm [ " SpaceShi p"] = &hit SpaceShi p;
(*phm [ " SpaceStation"] = &hitSpaceStation;
(*phm ["Asteroid'] = &hitAsteroid,
return phm

}

Regrettably, our hi t functions now get a general GaneQbj ect parameter instead of the derived class parameters they expect. To
bring reality into accord with expectation, we must resort to adynani ¢_cast (seeltem 2) at the top of each function:

voi d SpaceShi p: : hit SpaceShi p( GaneObj ect & spaceShi p)

{
SpaceShi p& ot her Shi p=

dynam c_cast <SpaceShi p&>( spaceShi p) ;

process a SpaceShi p- SpaceShip col li sion;

}

voi d SpaceShi p: : hit SpaceSt ati on( GaneChj ect & spaceSt ati on)
{
SpaceSt ati on& station=
dynam c_cast <SpaceSt ati on&>(spaceStati on);

process a SpaceShi p- SpaceStation colli sion;

}

voi d SpaceShi p: : hi t Ast er oi d( Gane(bj ect & ast er oi d)
{
Asteroi d& theAsteroid =
dynam c_cast <Ast er oi d&>( ast er oi d) ;

process a SpaceShi p-Asteroid collision;

}

Each of thedynam c_cast swill throw abad_cast exception if the cast fails. They should never fail, of course, because the hi t
functions should never be called with incorrect parameter types. Still, we're better off safe than sorry.

Using Non-Member Collision-Processing Functions

We now know how to build avtbl-like associative array that lets us implement the second half of a double-dispatch, and we know how
to encapsulate the details of the associative array inside alookup function. Because this array contains pointers to member functions,
however, we still have to modify class definitionsif anew type of GameQhj ect isadded to the game, and that means everybody has
to recompile, even people who don't care about the new type of object. For example, if Sat el | i t e were added to our game, we'd
have to augment the SpaceShi p class with adeclaration of a function to handle collisions between satellites and spaceships. All
SpacesShi p clients would then have to recompile, even if they couldn't care less about the existence of satellites. Thisisthe problem
that led usto reject the implementation of double-dispatching based purely on virtual functions, and that solution was alot less work
than the one we've just seen.

The recompilation problem would go away if our associative array contained pointers to non-member functions. Furthermore,
switching to non-member collision-processing functions would let us address a design question we have so far ignored, namely, in
which class should collisions between objects of different types be handled? With the implementation we just devel oped, if object 1
and object 2 collide and object 1 happens to be the left-hand argument to pr ocessCol | i si on, the collision will be handled inside
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the classfor object 1. If object 2 happens to be the left-hand argument to pr ocessCol | i si on, however, the collision will be
handled inside the class for object 2. Does this make sense? Wouldn't it be better to design things so that collisions between objects of
types A and B are handled by neither A nor B but instead in some neutral location outside both classes?

If we move the collision-processing functions out of our classes, we can give clients header files that contain class definitions without
any hit orcol | i de functions. We can then structure our implementation file for pr ocessCol | i si on asfollows:

#i ncl ude " SpaceShi p. h"

#i ncl ude " SpaceStation. h"

#i ncl ude "Asteroid. h"

nanespace { /1 unnamed nanmespace —see bel ow

/1 primary collision-processing functions
voi d shi pAst eroi d( Gane(bj ect & spaceShi p,
Gameoj ect & ast eroi d);

voi d shi pStation(GaneQbj ect & spaceShi p,
Ganmehj ect & spaceSt ation);

voi d asteroi dStati on(GaneQbj ect & ast eroi d,
Gamehj ect & spaceSt ati on);

/'l secondary collision-processing functions that just
/1 inplement symmetry: swap the paraneters and call a
/1 primary function
voi d ast er oi dShi p( GanmreCbj ect & asteroi d,

Gamre(bj ect & spaceShi p)
{ shipAsteroid(spaceShip, asteroid); }

voi d stationShi p(GaneQbj ect & spaceStation,
Gamehj ect & spaceShi p)

{ shipStation(spaceShip, spaceStation); }

voi d stationAsteroi d( Ganebj ect & spaceStati on,

Game(hj ect & ast eroi d)
{ asteroidStation(asteroid, spaceStation); }

/1l see below for a description of these types/functions
typedef void (*H tFunctionPtr)(GaneQbj ect & Ganmebject &);
t ypedef map< pair<string,string> HtFunctionPtr > HitMp;

pai r<string, string> nakeStringPair(const char *sli,
const char *s2);

HtMap * initializeCollisionMap();

Hi t Functi onPtr | ookup(const string& classl,
const string& class2);

} // end nanespace

voi d processCol | i sion(GanmeCbj ect & obj ect 1,
Gamehj ect & obj ect 2)
{

Hi t Functi onPtr phf = | ookup(typei d(objectl).name(),
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typei d(obj ect2). nanme());

if (phf) phf(objectl, object?2);
el se throw UnknownCol | i si on(obj ectl, object?2);

}

Note the use of the unnamed namespace to contain the functions used to implement pr ocessCol | i si on. Everything in such an
unnamed namespace is private to the current trand ation unit (essentially the current file) — it's just like the functions were declared
st at i c at file scope. With the advent of namespaces, however, statics at file scope have been deprecated, so you should accustom
yourself to using unnamed namespaces as soon as your compilers support them.

Conceptually, thisimplementation is the same as the one that used member functions, but there are some minor differences. First,
Hi t Functi onPt r isnow atypedef for apointer to anon-member function. Second, the exception class

Col I'i si onW t hUnknownCbj ect has been renamed UnknownCol | i si on and modified to take two objects instead of one.
Finally, | ookup must now take two type names and perform both parts of the double-dispatch. This means our collision map must
now hold three pieces of information: two typesnamesand aHi t Functi onPtr.

Asfate would have it, the standard map classis defined to hold only two pieces of information. We can finesse that problem by using
the standard pai r template, which lets us bundle the two type names together asasingleobject.i niti al i zeCol | i si onMap,
along withitsmakeSt r i ngPai r helper function, then looks like this:

/1l we use this function to create pair<string,string>
/! objects fromtwo char* literals. It's used in

/1 initializeCollisionMap bel ow. Note how this function
/! enables the return value optim zation (see_ltem 20).

nanespace { /!l unnamed nanespace again —see bel ow

pai r<string, string> nakeStringPair(const char *s1i,
const char *s2)
{ return pair<string,string>(sl, s2); }

} // end nanespace
nanespace { /1 still the unnanmed nanespace —see bel ow

HtMap * initializeCollisionMap()

{
Hi t Map *phm = new Hi t Map;

(*phm [ makeSt ri ngPai r (" SpaceShi p", "Asteroid")] =
&shi pAst er oi d;

(*phm [ makeSt ri ngPai r (" SpaceShi p", "SpaceStation")] =
&shi pSt ati on;

return phm
}

} // end nanespace

| ookup must also be modified to work with the pai r <st ri ng, st ri ng> objectsthat now comprise the first component of the
collision map:
nanespace { /1l 1 explain this below —trust ne

Hi t Functi onPtr | ookup(const string& classl,
const string& class?)
{
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static auto_ptr<Hit Map>
collisionMap(initializeCollisionMap());

/'l see below for a description of make pair
H tMap::iterator mapEntry=
col | i si onMap->find(make_pair(classl, class2));

if (mapEntry == collisionMap->end()) return O;

return (*mapEntry). second;

}

} // end nanespace

Thisis amost exactly what we had before. The only real differenceisthe use of the make_pai r function in this statement:
H t Map::iterator mapEntry=
col i si onMap->fi nd(make_pair(cl assl, class2));

make_pai r isjust aconvenience function (template) in the standard library (see Item E49 and Item 35) that saves us the trouble of
specifying the types when constructing apai r object. We could just as well have written the statement like this:
H t Map::iterator mapEntry=
col I'i si onMap->fi nd(pair<string,string>(classl, class2));

This calls for more typing, however, and specifying the types for the pai r isredundant (they're the same asthe types of cl ass1 and
cl ass?2), sothermake_pai r formismore commonly used.

BecausemakeStri ngPair,initializeCollisionMap,andl ookup were declared inside an unnamed namespace, each
must be implemented within the same namespace. That's why the implementations of the functions above are in the unnamed
namespace (for the same trandation unit as their declarations): so the linker will correctly associate their definitions (i.e., their
implementations) with their earlier declarations.

We have finally achieved our goals. If new subclasses of Gane(hj ect are added to our hierarchy, existing classes need not
recompile (unless they wish to use the new classes). We have no tangle of RTTI-based swi t ch ori f -t hen-el se conditionalsto
maintain. The addition of new classesto the hierarchy requires only well-defined and localized changesto our system: the addition of
one or moremap insertionsini ni tiali zeCol | i si onMap and the declarations of the new collision-processing functions in the
unnamed namespace associated with the implementation of pr ocessCol | i si on. It may have been alot of work to get here, but at
|east the trip was worthwhile. Yes? Yes?

Maybe.
Inheritance and Emulated Virtual Function Tables

Thereisonefinal problem we must confront. (If, at this point, you are wondering if there will always be one final problem to confront,
you have truly come to appreciate the difficulty of designing an implementation mechanism for virtual functions.) Everything we've
done will work fine aslong as we never need to alow inheritance-based type conversions when calling collision-processing functions.
But suppose we develop a game in which we must sometimes distinguish between commercial space ships and military space ships.
We could modify our hierarchy as follows, where we've heeded the guidance of Item 33 and made the concrete classes

Conmrer ci al Shi pandM |i t ar yShi p inherit from the newly abstract class Space Shi p:

file:///C|/mauro/Mec/M.htm (188 of 218) [2001-01-17 10:54:31]


file:///C|/mauro/EC/E_FR.HTM#8392

More Effective C++ | Book

SpaceStation
Commercial
Ship

file:///C|/mauro/Mec/M.htm (189 of 218) [2001-01-17 10:54:31]




More Effective C++ | Book

GameObject

SpaceShip

SpaceStation

Commercial
Ship
GameObject

SpaceShip

SpaceStation

Commercial
Ship

Suppose commercia and military ships behave identically when they collide with something. Then we'd expect to be able to use the
same collision-processing functions we had before Conmrer ci al Shi pandM | i t ar yShi p were added. In particular, if a
M | it ar yShi p object and an Ast er oi d collided, we'd expect

voi d shi pAst er oi d( GamreCbj ect & spaceShi p,
Game(hj ect & asteroid);

to be called. It would not be. Instead, an UnknownCol | i si on exception would be thrown. That's because | ookup would be asked
to find afunction corresponding to the type names "MilitaryShip" and "Asteroid," and no such function would be found in
col i si onMap. EventhoughaM | it ar yShi p can betreated like aSpaceShi p, | ookup has no way of knowing that.

Furthermore, there is no easy way of telling it. If you need to implement double-dispatching and you need to support inheritance-based
parameter conversions such as these, your only practical recourseisto fall back on the double-virtual-function-call mechanism we
examined earlier. That implies you'll also have to put up with everybody recompiling when you add to your inheritance hierarchy, but
that's just the way life is sometimes.

Initializing Emulated Virtual Function Tables (Reprise)

That's really all there isto say about double-dispatching, but it would be unpleasant to end the discussion on such a downbesat note,
and unpleasantnessiis, well, unpleasant. Instead, let's conclude by outlining an alternative approach to initializing col | i si onMap.

As things stand now, our design is entirely static. Once we've registered a function for processing collisions between two types of
objects, that's it; we're stuck with that function forever. What if we'd like to add, remove, or change collision-processing functions as
the game proceeds? There's no way to do it.

But there can be. We can turn the concept of amap for storing collision-processing functionsinto a class that offers member functions
allowing usto modify the contents of the map dynamically. For example:

class Col lisionMap {
public:
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typedef void (*H tFunctionPtr) (GanmeCbj ect & Ganebject&);

voi d addEntry(const string& typel,
const string& type2,
Hi t FunctionPtr colli sionFuncti on,
bool symetric = true); /1 see bel ow

void renoveEntry(const string& typel,
const string& type2);

Hi t Functi onPtr | ookup(const string& typel,
const string& type2);

/1 this function returns a reference to the one and only
/'l map —see ltem 26

static CollisionMap& theCollisionMap();

private:

/!l these functions are private to prevent the creation
/1 of multiple maps —see_ltem 26

Col l'i si onMap();

Col I'i si onMap(const Col I'i si onMap&) ;

3

This class lets us add entries to the map, remove them from it, and look up the callision-processing function associated with a
particular pair of type names. It also uses the techniques of 1tem 26 to limit the number of Col | i si onMap objects to one, because
thereis only one map in our system. (More complex games with multiple maps are easy to imagine.) Finally, it alows usto simplify
the addition of symmetric collisionsto the map (i.e., collisionsin which the effect of an object of type T1 hitting an object of type T2
are the same as that of an object of type T2 hitting an object of type T1) by automatically adding the implied map entry when
addEnt r y is called with the optional parameter symmet ri c settot r ue.

Withthe Col | i si onMap class, each client wishing to add an entry to the map does so directly:

voi d shi pAst er oi d( GaneCbj ect & spaceShi p,
Ganme(bj ect & ast eroi d);
Col I'i si onMap: : theCol |'i si onMap(). addEntry(" SpaceShi p",
"Ast eroi d",
&shi pAst eroi d);

voi d shi pStation(GaneObj ect & spaceShi p,
Gamehj ect & spaceStation);
Col I'i si onMap: :theCol |'i si onMap(). addEntry(" SpaceShi p",
"SpaceStation",
&shi pStati on);

voi d asteroi dStati on(GaneQbj ect & asteroid,
Ganehj ect & spaceStation);
Col l'i si onMap: :theCol I'i si onMap().addEntry("Asteroid",
"SpaceStation",
&ast eroi dSt ati on);

Care must be taken to ensure that these map entries are added to the map before any collisions occur that would call the associated
functions. One way to do this would be to have constructorsin Game(bj ect subclasses check to make sure the appropriate
mappings had been added each time an object was created. Such an approach would exact a small performance penalty at runtime. An
aternative would beto create aRegi st er Col | i si onFunct i on class:

cl ass Regi sterCol lisionFunction {
public:
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Regi st er Col | i si onFuncti on(
const string& typel,
const string& type2,
Col l'i si onMap: : Hi t FunctionPtr collisionFuncti on,
bool symetric = true)

{
Col I'i si onMap: :theCol I'i si onMap().addEntry(typel, typez,

col l'i si onFuncti on,
symetric);
}
}

Clients could then use global objects of this type to automatically register the functions they need:

Regi st er Col | i si onFunction cf 1(" SpaceShi p", "Asteroid",
&shi pAst eroi d) ;

Regi st er Col I i si onFunction cf2("SpaceShi p", "SpaceStation",
&shi pStation);

Regi st er Col | i si onFunction cf3("Asteroid", "SpaceStation",
&ast eroi dStati on);

int main(int argc, char * argv[])

{
}

Because these objects are created before nai n isinvoked, the functions their constructors register are also added to the map before
mai n iscaled. If, later, anew derived class is added
class Satellite: public GaneGbject { ... };

and one or more new collision-processing functions are written,

void satelliteShi p(GaneChjecté& satellite,
Gamehj ect & spaceShi p) ;

void satelliteAsteroi d(Ganehject& satellite,
Gane(bj ect & asteroid);
these new functions can be similarly added to the map without disturbing existing code:

Regi sterCol | i si onFunction cf4("Satellite", "SpaceShip",
&satel liteShip);

Regi ster Col | i si onFunction cf5("Satellite", "Asteroid",
&atelliteAsteroid);

This doesn't change the fact that there's no perfect way to implement multiple dispatch, but it does make it easy to provide datafor a
map-based implementation if we decide such an approach is the best match for our needs.

Return

Back to Item 31: Making functions virtual with respect to more than one object
Continue to Item 32: Program in the future tense

Miscellany

We thus arrive at the organizational back of the bus, the chapter containing the guidelines no one else would have. We begin with two
Items on C++ software development that describe how to design systems that accommodate change. One of the strengths of the
object-oriented approach to systems building is its support for change, and these Items describe specific steps you can take to fortify
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your software against the slings and arrows of aworld that refusesto stand still.

We then examine how to combine C and C++ in the same program. This necessarily leads to consideration of extralinguistic issues,
but C++ existsin the real world, so sometimes we must confront such things.

Finally, I summarize changes to the -C++ language standard since publication of the de facto reference. | especially cover the
sweeping changes that have been made in the standard library (see also Item E49). If you have not been following the standardization
process closely, you are probably in for some surprises -- many of them quite pleasant.

Back to Miscellany
Continue to Item 33: Make non-leaf classes abstract

Item 32: Program in the future tense.
Things change.

As software devel opers, we may not know much, but we do know that things will change. We don't necessarily know what will
change, how the changes will be brought about, when the changes will occur, or why they will take place, but we do know this: things
will change.

Good software adapts well to change. It accommodates new features, it ports to new platforms, it adjusts to new demands, it handles
new inputs. Software this flexible, this robust, and this reliable does not come about by accident. It is designed and implemented by
programmers who conform to the constraints of today while keeping in mind the probable needs of tomorrow. This kind of software
— software that accepts change gracefully — iswritten by people who program in the future tense.

To program in the future tense is to accept that things will change and to be prepared for it. It isto recognize that new functions will be
added to libraries, that new overloadings will occur, and to watch for the potentially ambiguous function calls that might result (see
Item E26). It isto acknowledge that new classes will be added to hierarchies, that present-day derived classes may be tomorrow's base
classes, and to prepare for that possibility. It isto accept that new applications will be written, that functions will be called in new
contexts, and to write those functions so they continue to perform correctly. It isto remember that the programmers charged with
software maintenance are typically not the code's original devel opers, hence to design and implement in afashion that facilitates
comprehension, modification, and enhancement by others.

One way to do thisis to express design constraints in C++ instead of (or in addition to) comments or other documentation. For
example, if aclassis designed to never have derived classes, don't just put a comment in the header file above the class, use C++ to
prevent derivation; Item 26 shows you how. If a class requiresthat al instances be on the heap, don't just tell clients that, enforce the
restriction by applying the approach of Item 27. If copying and assignment make no sense for a class, prevent those operations by
declaring the copy constructor and the assignment operator private (see Item E27). C++ offers great power, flexibility, and
expressiveness. Use these characteristics of the language to enforce the design decisions in your programs.

Given that things will change, write classes that can withstand the rough-and-tumble world of software evolution. Avoid
"demand-paged" virtual functions, whereby you make no functions virtual unless somebody comes along and demands that you do it.
Instead, determine the meaning of afunction and whether it makes sense to let it be redefined in derived classes. If it does, declare it
virtual, even if nobody redefinesit right away. If it doesn't, declare it nonvirtual, and don't change it later just because it would be
convenient for someone; make sure the change makes sense in the context of the entire class and the abstraction it represents (see ltem
E36).

Handle assignment and copy construction in every class, even if "nobody ever does those things." Just because they don't do them now
doesn't mean they won't do them in the future (see Item E18). If these functions are difficult to implement, declarethem pri vat e
(see Item E27). That way no one will inadvertently call compiler-generated functions that do the wrong thing (as often happens with
default assignment operators and copy constructors — see Iltem E11).

Adhere to the principle of least astonishment: strive to provide classes whose operators and functions have a natural syntax and an
intuitive semantics. Preserve consistency with the behavior of the built-in types: when in doubt, do asthei nt sdo.

Recognize that anything somebody can do, they will do. They'll throw exceptions, they'll assign objects to themselves, they'll use
objects before giving them values, they'll give objects values and never use them, they'll give them huge values, they'll give them tiny
values, they'll give them null values. In general, if it will compile, somebody will do it. As aresult, make your classes easy to use
correctly and hard to use incorrectly. Accept that clients will make mistakes, and design your classes so you can prevent, detect, or
correct such errors (see, for example, Item 33 and Item E46).

Strive for portable code. It's not much harder to write portable programs than to write unportable ones, and only rarely will the
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difference in performance be significant enough to justify unportable constructs (see Item 16). Even programs designed for custom

hardware often end up being ported, because stock hardware generally achieves an equivalent level of performance within afew years.
Writing portable code allows you to switch platforms easily, to enlarge your client base, and to brag about supporting open systems. It
also makesit easier to recover if you bet wrong in the operating system sweepstakes.

Design your code so that when changes are necessary, the impact is localized. Encapsulate as much as you can; make implementation
details private (e.g., Item E20). Where applicable, use unnamed namespaces or file-st at i ¢ objects and functions (see Item 31). Try

to avoid designs that lead to virtual base classes, because such classes must be initialized by every class derived from them — even
those derived indirectly (see Item 4 and Item E43). Avoid RTTI-based designs that make use of cascadingi f -t hen-el se statements

(see Item 31 again, then see |tem E39 for good measure). Every time the class hierarchy changes, each set of statements must be
updated, and if you forget one, you'll receive no warning from your compilers.

These are well known and oft-repeated exhortations, but most programmers are still stuck in the present tense. As are many authors,
unfortunately. Consider this advice by awell-regarded C++ expert:

Y ou need avirtual destructor whenever someone deletes a B* that actually pointsto a D.
Here B isabase classand Dis aderived class. In other words, this author suggests that if your program looks like this, you don't need
avirtual destructor in B:

class B{ ... }; /1 no virtual dtor needed
class D. public B{ ... };
B *pb = new D

However, the situation changes if you add this statement:

del ete pb; /1 NOWyou need the virtual
/] destructor in B

The implication is that a minor change to client code — the addition of adel et e statement — can result in the need to change the
class definition for B. When that happens, all B's clients must recompile. Following this author's advice, then, the addition of asingle
statement in one function can lead to extensive code recompilation and relinking for all clients of alibrary. Thisis anything but
effective software design.

On the same topic, a different author writes:

If apublic base class does not have a virtual destructor, no derived class nor members of a derived class should have a
destructor.

In other words, thisis okay,

class string { /'l fromthe standard C++ |ibrary
public:
~string();
b
class B{ ... }; // no data nenbers with dtors,

// no virtual dtor needed

but if anew classis derived from B, things change:

class D public B {
string nane; /1 NOW ~B needs to be virtual

};

Again, asmall change to the way B is used (here, the addition of a derived class that contains a member with a destructor) may
necessitate extensive recompilation and relinking by clients. But small changes in software should have small impacts on systems.
This design fails that test.

The same author writes:
If amultiple inheritance hierarchy has any destructors, every base class should have avirtual destructor.
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In al these quotations, note the present-tense thinking. How do clients manipulate pointers now? What class members have destructors
now? What classes in the hierarchy have destructors now?

Future-tense thinking is quite different. Instead of asking how a classis used now, it asks how the classis designed to be used.
Future-tense thinking says, if aclassis designed to be used as a base class (even if it's not used as one now), it should have avirtual
destructor (see ltem E14). Such classes behave correctly both now and in the future, and they don't affect other library clients when
new classes derive from them. (At least, they have no effect asfar as their destructor is concerned. If additional changes to the class
are required, other clients may be affected.)

A commercial classlibrary (onethat predatesthe st r i ng specification in the C++ library standard) contains a string class with no
virtual destructor. The vendor's explanation?

We didn't make the destructor virtual, because we didn't want St r i ng to have avtbl. We have no intention of ever
havinga St ri ng*, so thisis not a problem. We are well aware of the difficulties this could cause.

Isthis present-tense or future-tense thinking?

Certainly the vtbl issue is alegitimate technical concern (see Item 24 and Item E14). The implementation of most St r i ng classes
containsonly asinglechar * pointer inside each St ri ng object, so adding avptr to each St r i ng would double the size of those
objects. It is easy to understand why a vendor would be unwilling to do that, especially for a highly visible, heavily used class like
St ri ng. The performance of such aclass might easily fall within the 20% of a program that makes a difference (see Item 16).

Still, the total memory devoted to a string object — the memory for the object itself plus the heap memory needed to hold the string's
value — istypically much greater than just the space needed to hold achar * pointer. From this perspective, the overhead imposed by
avptr isless significant. Nevertheless, it is alegitimate technical consideration. (Certainly the || SO/ANSI standardization committee

seemsto think so: the standard st r i ng type has anonvirtual destructor.)

Somewhat more troubling is the vendor's remark, "We have no intention of ever havinga St ri ng*, so thisis not a problem.” That
may be true, but their St r i ng classis part of alibrary they make available to thousands of developers. That's alot of developers,
each with adifferent level of experience with C++, each doing something unigue. Do those devel opers understand the consequences of
there being no virtual destructor in St ri ng? Arethey likely to know that because St r i ng has no virtual destructor, deriving new
classesfrom St r i ng isahigh-risk venture? | s this vendor confident their clients will understand that in the absence of a virtual
destructor, deleting objects through St r i ng* pointerswill not work properly and RTTI operations on pointers and references to

St ri ngsmay return incorrect information? Is this class easy to use correctly and hard to use incorrectly?

This vendor should provide documentation for its St r i ng class that makes clear the classis not designed for derivation, but what if
programmers overlook the caveat or flat-out fail to read the documentation?

An alternative would be to use C++ itself to prohibit derivation. Item 26 describes how to do this by limiting object creation to the
heap and then using aut o_pt r objects to manipulate the heap objects. The interface for St r i ng creation would then be both
unconventional and inconvenient, requiring this,

auto_ptr<String> ps(String::nmakeString("Future tense C++"));

/1l treat ps as a pointer to

/1l a String object, but don't

/1 worry about deleting it
instead of this,

String s("Future tense C++");

but perhaps the reduction in the risk of improperly behaving derived classes would be worth the syntactic inconvenience. (For
St ri ng, thisisunlikely to be the case, but for other classes, the trade-off might well be worth it.)

Thereisaneed, of course, for present-tense thinking. The software you're devel oping has to work with current compilers; you can't
afford to wait until the latest language features are implemented. It has to run on the hardware you currently support and it must do so
under configurations your clients have available; you can't force your customers to upgrade their systems or modify their operating
environment. It has to offer acceptable performance now; promises of smaller, faster programs some years down the line don't
generally warm the cockles of potential customers' hearts. And the software you're working on must be available "soon," which often
means some time in the recent past. These are important constraints. Y ou cannot ignore them.

Future-tense thinking simply adds a few additional considerations:
« Provide complete classes (see Item E18), even if some parts aren't currently used. When new demands are made on your classes,
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you're less likely to have to go back and modify them.

« Design your interfaces to facilitate common operations and prevent common errors (see ltem E46). Make the classes easy to use

correctly, hard to use incorrectly. For example, prohibit copying and assignment for classes where those operations make no
sense (see Item E27). Prevent partial assignments (see [tem 33).

« If thereisno great penalty for generalizing your code, generalize it. For example, if you are writing an algorithm for tree
traversal, consider generalizing it to handle any kind of directed acyclic graph.

Future tense thinking increases the reusability of the code you write, enhances its maintainability, makes it more robust, and facilitates
graceful change in an environment where change is a certainty. It must be balanced against present-tense constraints. Too many
programmers focus exclusively on current needs, however, and in doing so they sacrifice the long-term viability of the software they
design and implement. Be different. Be arenegade. Program in the future tense.

Back to Item 32: Program in the future tense
Continue to Item 34: Understand how to combine C++ and C in the same program

Item 33; Make non-leaf classes abstract.

Suppose you're working on a project whose software deals with animals. Within this software, most animals can be treated pretty
much the same, but two kinds of animals — lizards and chickens — require specia handling. That being the case, the obvious way to
relate the classes for animals, lizards, and chickensislike this:

The Ani mal class embodies the features shared by all the creatures you deal with, and the Li zar d and Chi cken classes speciaize
Ani mal inways appropriate for lizards and chickens, respectively.

Chicken

Cne > Conesn D

Here's a sketch of the definitions for these classes:
class Animal {
public:
Ani mal & oper at or =(const Ani nmal & rhs);

3
class Lizard: public Aninmal {
public:
Li zar d& oper at or =(const Li zard& rhs);
3
cl ass Chicken: public Animal {
public:
Chi cken& oper at or =(const Chi cken& rhs);
3
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Only the assignment operators are shown here, but that's more than enough to keep us busy for awhile. Consider this code:

Lizard |iz1;
Li zard i z2;
Ani mal *pAnimal 1 = &iz1;
Ani mal *pAnimal 2 = &iz2;

*pAni nal 1 = *pAni mal 2;

There are two problems here. First, the assignment operator invoked on the last lineis that of the Ani mal class, even though the
objectsinvolved are of typeLi zar d. Asaresult, only the Ani mal part of | i z1 will be modified. Thisisa partial assignment. After
theassignment, | i z1's Ani nal members have the valuesthey got from 1 i z2, butl i z1'sLi zar d members remain unchanged.

The second problem is that real programmers write code like this. It's not uncommon to make assignments to objects through pointers,
especially for experienced C programmers who have moved to C++. That being the case, we'd like to make the assignment behavein a
more reasonable fashion. As Item 32 points out, our classes should be easy to use correctly and difficult to useincorrectly, and the

classes in the hierarchy above are easy to use incorrectly.

One approach to the problem isto make the assignment operators virtual. If Ani mal ::oper at or = were virtual, the assignment
would invoke the Li zar d assignment operator, which is certainly the correct one to call. However, look what happensif we declare
the assignment operators virtual :
cl ass Aninmal {
public:
virtual Aninal & operator=(const Aninmal & rhs);

3
class Lizard: public Aninmal {
public:
virtual Lizard& operator=(const Aninal & rhs);
3
cl ass Chicken: public Animal {
public:
virtual Chicken& operator=(const Aninmal & rhs);
3

Due to relatively recent changes to the language, we can customize the return value of the assignment operators so that each returns a
reference to the correct class, but the rules of C++ force us to declare identical parameter types for avirtual function in every classin
which it is declared. That means the assignment operator for the Li zar d and Chi cken classes must be prepared to accept any kind
of Ani mal object on the right-hand side of an assignment. That, in turn, means we have to confront the fact that code like the
following islegal:

Li zard i z;

Chi cken chi ck;

Animal *pAnimall = &l z;
Ani mal *pAni mal 2 = &chi ck;
*pAni mal 1 = *pAni mal 2; /1 assign a chicken to

// a lizard!

Thisis amixed-type assignment: aLi zar d ison the left and aChi cken ison theright. Mixed-type assignments aren't usually a
problem in C++, because the language's strong typing generally renders them illegal. By making Ani rmal 's assignment operator
virtual, however, we opened the door to such mixed-type operations.
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This puts us in adifficult position. We'd like to allow same-type assignments through pointers, but we'd like to forbid mixed-type
assignments through those same pointers. In other words, we want to allow this,

Ani mal *pAnimal 1l = &iz1;

Ani mal *pAnimal 2 = &liz2;

*pAni mal 1 = *pAni mal 2; [/l assign a lizard to a lizard
but we want to prohibit this:

Ani mal *pAnimal 1l = & i z;

Ani mal *pAni mal 2 = &chi ck;

*pAni nal 1 = *pAni mal 2; /1 assign a chicken to a lizard

Digtinctions such as these can be made only at runtime, because sometimes assigning * pAni mal 2 to * pAni mal 1 isvalid,
sometimes it's not. We thus enter the murky world of type-based runtime errors. In particular, we need to signal an error inside
oper at or = if we're faced with a mixed-type assignment, but if the types are the same, we want to perform the assignment in the
usual fashion.

Wecanuseadynam c_cast (seeltem 2) toimplement this behavior. Here'show to do it for Li zar d's assignment operator:
Li zard& Li zard: : operat or=(const Ani nal & r hs)

{
/'l make sure rhs is really a lizard
const Lizard& rhs_liz = dynam c_cast<const Lizard&>(rhs);
proceed with a nornmal assignnent of rhs_liz to *this;

}

Thisfunction assignsr hs to*t hi s only if r hs isreally aLi zar d. If it's not, the function propagatesthebad _cast exception
that dynam c_cast throwswhen the cast fails. (Actualy, the type of the exceptionisst d::bad_cast , because the components of
the standard library, including the exceptions thrown by the standard components, are in the namespace st d. For an overview of the
standard library, see [tem E49 and Item 35.)

Even without worrying about exceptions, this function seems needlessly complicated and expensive — thedynam ¢_cast must
consult at ype_i nf o structure; see Item 24 — in the common case where one Li zar d object is assigned to another:

Lizard liz1, 1iz2;

lizl =1iz2; /1l no need to performa
/1 dynamic_cast: this
[l assignment nust be valid

We can handle this case without paying for the complexity or cost of adynam ¢_cast by addingto Li zar d the conventional
assignment operator:

class Lizard: public Aninal {
public:
virtual Lizard& operator=(const Aninmal & rhs);

Li zar d& oper at or =(const Li zard& rhs); /1 add this
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Lizard lizl, 1iz2;

izl =1iz2; /'l calls operator= taking
/1l a const Lizard&

Ani mal *pAnimall = &iz1;
Ani mal *pAnimal 2 = &iz2;
*pAni mal 1 = *pAni mal 2; /] calls operator= taking

/] a const Aninmal &

Infact, giventhislatter oper at or =, it'ssimplicity itself to implement the former one in terms of it:
Li zard& Li zard: : operat or =(const Ani mal & rhs)

{
}

This function attemptsto cast r hs tobeali zar d. If the cast succeeds, the normal class assignment operator is called. Otherwise, a
bad_cast exception isthrown.

return operator=(dynamn c_cast<const Lizard&>(rhs));

Frankly, al this business of checking types at runtime and using dynam c_cast s makes me nervous. For one thing, some compilers
till lack support for dynam ¢_cast , so code that uses it, though theoretically portable, is not necessarily portable in practice. More
importantly, it requiresthat clientsof Li zar d and Chi cken be prepared to catch bad_cast exceptions and do something sensible
with them each time they perform an assignment. In my experience, there just aren't that many programmers who are willing to
program that way. If they don', it's not clear we've gained awhole lot over our original situation where we were trying to guard
against partial assignments.

Given thisrather unsatisfactory state of affairs regarding virtual assignment operators, it makes sense to regroup and try to find away
to prevent clients from making problematic assignmentsin the first place. If such assignments are rejected during compilation, we
don't have to worry about them doing the wrong thing.

The easiest way to prevent such assignmentsis to make oper at or = privatein Ani mal . That way, lizards can be assigned to lizards
and chickens can be assigned to chickens, but partial and mixed-type assignments are forbidden:

class Animal {

private:
Ani mal & oper at or =(const Ani mal & r hs); /1 this is now
[l private
b
class Lizard: public Animal ({
publ i c:

Li zar d& oper at or =(const Li zard& rhs);

b
cl ass Chicken: public Animal {
public:
Chi cken& oper at or =(const Chi cken& rhs);
3

Lizard lizl, liz2;
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izl =1iz2; /'l fine

Chi cken chickl, chick2;

chi ckl = chick2; // also fine

Ani mal *pAnimal 1l = &iz1;

Ani mal *pAni mal 2 = &chi ckl;

*pAni mal 1 = *pAni mal 2; /] error! attenpt to call

/1 private Aninmal::operator=

Unfortunately, Ani mal isaconcrete class, and this approach also makes assignments between Ani nal objectsillegal:
Ani mal ani mal 1, ani nal 2;

ani mal 1 = ani mal 2; /'l error! attenpt to call
[l private Animal::operator=

Moreover, it makesit impossible to implement the Li zar d and Chi cken assignment operators correctly, because assignment
operators in derived classes are responsible for calling assignment operatorsin their base classes (see Item E16):

Li zard& Li zard: : operat or=(const Lizard& rhs)
if (this == &hs) return *this;

Ani mal : : operat or=(rhs); /1l error! attenpt to call
/! private function. But
/'l Lizard::operator= nust
/[l call this function to
/1 assign the Animal parts
} /1 of *thisl!

We can solve thislatter problem by declaring Ani mal ::oper at or = pr ot ect ed, but the conundrum of allowing assignments
between Ani mal objects while preventing partial assignments of Li zar d and Chi cken objects through Ani mal pointers remains.
What's a poor programmer to do?

The easiest thing is to eliminate the need to allow assignments between Ani mal objects, and the easiest way to do that isto make

Ani mal an abstract class. Asan abstract class, Ani nmal can't be instantiated, so there will be no need to allow assignments between
Ani mal s. Of course, this leads to a new problem, because our original design for this system presupposed that Ani mal objects were
necessary. Thereis an easy way around this difficulty. Instead of making Ani mal itself abstract, we create a new class—

Abst ract Ani mal , say — consisting of the common features of Ani mal , Li zar d, and Chi cken objects, and we make that class
abstract. Then we have each of our concrete classes inherit from Abst r act Ani mal . The revised hierarchy looks like this,

AbstractAnimal AbstractAnimal

Cm > CromD
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AbstractAnimal AbstractAnimal

and the class definitions are as follows:

cl ass Abstract Ani mal {
pr ot ect ed:
Abst ract Ani nal & oper at or=(const Abstract Ani mal & rhs);

public:

virtual ~AbstractAnimal () = O; /'l see bel ow
b
cl ass Aninmal: public Abstract Aninal {
public:

Ani mal & oper at or =(const Ani nal & rhs);
s
class Lizard: public Abstract Aninmal {
public:

Li zar d& operat or =(const Li zard& rhs);
b
cl ass Chicken: public AbstractAninal {
public:

Chi cken& oper at or =(const Chi cken& rhs);
H

This design gives you everything you need. Homogeneous assignments are allowed for lizards, chickens, and animals; partial
assignments and heterogeneous assignments are prohibited; and derived class assignment operators may call the assignment operator
in the base class. Furthermore, none of the code written in terms of the Ani mal |, Li zar d, or Chi cken classesrequires
modification, because these classes continue to exist and to behave as they did before Abst r act Ani mal wasintroduced. Sure, such
code has to be recompiled, but that's a small priceto pay for the security of knowing that assignments that compile will behave
intuitively and assignments that would behave unintuitively won't compile.

For al thisto work, Abst r act Ani mal must be abstract — it must contain at least one pure virtual function. In most cases, coming
up with a suitable function is not a problem, but on rare occasions you may find yourself facing the need to create a class like

Abst ract Ani mal inwhich none of the member functions would naturally be declared pure virtual. In such cases, the conventional
technique is to make the destructor a pure virtual function; that's what's shown above. In order to support polymorphism through
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pointers correctly, base classes need virtual destructors anyway (see Item E14), so the only cost associated with making such
destructors pure virtua is the inconvenience of having to implement them outside their class definitions. (For an example, see page
195))

(If the notion of implementing a pure virtual function strikes you as odd, you just haven't been getting out enough. Declaring a
function pure virtual doesn't mean it has no implementation, it means

« the current classis abstract, and

« any concrete class inheriting from the current class must declare the function as a"normal" virtual function (i.e., without the
II=OII)'

True, most pure virtual functions are never implemented, but pure virtual destructors are a specia case. They must be implemented,
because they are called whenever a derived class destructor is invoked. Furthermore, they often perform useful tasks, such asreleasing
resources (see Item 9) or logging messages. |mplementing pure virtual functions may be uncommon in general, but for pure virtua
destructors, it's not just common, it's mandatory.)

Y ou may have noticed that this discussion of assignment through base class pointers is based on the assumption that concrete base
classeslike Ani mal contain data members. If there are no data members, you might point out, there is no problem, and it would be
safe to have a concrete class inherit from a second, dataless, concrete class.

One of two situations appliesto your data-free would-be concrete base class: either it might have data members in the future or it
might not. If it might have data membersin the future, all you're doing is postponing the problem until the data members are added, in
which case you're merely trading short-term convenience for long-term grief (see aso Item 32). Alternatively, if the base class should

truly never have any data members, that sounds very much like it should be an abstract classin the first place. What use is a concrete
base class without data?

Replacement of a concrete base classlike Ani mal with an abstract base class like Abst r act Ani mal yields benefits far beyond
simply making the behavior of oper at or = easier to understand. It also reduces the chances that you'll try to treat arrays
polymorphically, the unpleasant consequences of which are examined in Item 3. The most significant benefit of the technique,
however, occurs at the design level, because replacing concrete base classes with abstract base classes forces you to explicitly
recognize the existence of useful abstractions. That is, it makes you create new abstract classes for useful concepts, even if you aren't
aware of the fact that the useful concepts exist.

If you have two concrete classes C1 and C2 and you'd like C2 to publicly inherit from C1, you should transform that two-class
hierarchy into athree-class hierarchy by creating a new abstract class A and having both C1 and C2 publicly inherit from it:

Ci & )
e @ ©@ @) ) (2

Your inital idea Your transformed hierarchy Your inital idea Your transformed hiErar{:hv

Yourinitalidea  Your transformed hierarchy g, inita) idea Your transformed hierarchy
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The primary value of thistransformation isthat it forces you to identify the abstract class A. Clearly, C1 and C2 have something in
common,; that's why they're related by public inheritance (see Item E35). With this transformation, you must identify what that
something is. Furthermore, you must formalize the something as a classin C++, at which point it becomes more than just a vague
something, it achieves the status of aformal abstraction, one with well-defined member functions and well-defined semantics.

All of which leads to some worrisome thinking. After all, every class represents some kind of abstraction, so shouldn't we create two
classes for every concept in our hierarchy, one being abstract (to embody the abstract part of the abstraction) and one being concrete
(to embody the object-generation part of the abstraction)? No. If you do, you'll end up with a hierarchy with too many classes. Such a
hierarchy is difficult to understand, hard to maintain, and expensive to compile. That is not the goal of object-oriented design.

The goal isto identify useful abstractions and to force them — and only them — into existence as abstract classes. But how do you
identify useful abstractions? Who knows what abstractions might prove useful in the future? Who can predict who's going to want to
inherit from what?

Well, | don't know how to predict the future uses of an inheritance hierarchy, but | do know one thing: the need for an abstraction in
one context may be coincidental, but the need for an abstraction in more than one context is usually meaningful. Useful abstractions,
then, are those that are needed in more than one context. That is, they correspond to classes that are useful in their own right (i.e., itis
useful to have objects of that type) and that are also useful for purposes of one or more derived classes.

Thisis precisely why the transformation from concrete base class to abstract base class is useful: it forces the introduction of a new
abstract class only when an existing concrete classis about to be used as a base class, i.e., when the classis about to be (re)used in a
new context. Such abstractions are useful, because they have, through demonstrated need, shown themselves to be so.

The first time a concept is needed, we can't justify the creation of both an abstract class (for the concept) and a concrete class (for the
objects corresponding to that concept), but the second time that concept is needed, we can justify the creation of both the abstract and
the concrete classes. The transformation I've described simply mechanizes this process, and in so doing it forces designers and
programmers to represent explicitly those abstractions that are useful, even if the designers and programmers are not consciously
aware of the useful concepts. It al'so happens to make it alot easier to bring sanity to the behavior of assignment operators.

Let's consider a brief example. Suppose you're working on an application that deals with moving information between computers on a
network by breaking it into packets and transmitting them according to some protocol. All we'll consider hereis the class or classes for
representing packets. We'll assume such classes make sense for this application.

Suppose you deal with only a single kind of transfer protocol and only a single kind of packet. Perhaps you've heard that other
protocols and packet types exist, but you've never supported them, nor do you have any plans to support them in the future. Should
you make an abstract class for packets (for the concept that a packet represents) as well as a concrete class for the packets you'll
actually be using? If you do, you could hope to add new packet types later without changing the base class for packets. That would
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save you from having to recompile packet-using applications if you add new packet types. But that design requires two classes, and
right now you need only one (for the particular type of packets you use). Isit worth complicating your design now to allow for future
extension that may never take place?

There is no unequivocally correct choice to be made here, but experience has shown it is nearly impossible to design good classes for

concepts we do not understand well. If you create an abstract class for packets, how likely are you to get it right, especially since your
experienceislimited to only a single packet type? Remember that you gain the benefit of an abstract class for packets only if you can

design that class so that future classes can inherit from it without its being changed in any way. (If it needs to be changed, you have to
recompile all packet clients, and you've gained nothing.)

It isunlikely you could design a satisfactory abstract packet class unless you were well versed in many different kinds of packets and
in the varied contexts in which they are used. Given your limited experience in this case, my advice would be not to define an abstract
class for packets, adding one later only if you find aneed to inherit from the concrete packet class.

The transformation I've described here is a way to identify the need for abstract classes, not the way. There are many other ways to
identify good candidates for abstract classes; books on object-oriented analysis are filled with them. It's not the case that the only time
you should introduce abstract classesis when you find yourself wanting to have a concrete class inherit from another concrete class.
However, the desire to relate two concrete classes by public inheritance is usually indicative of a need for a new abstract class.

As s often the case in such matters, brash reality sometimes intrudes on the peaceful ruminations of theory. Third-party C++ class
libraries are proliferating with gusto, and what are you to do if you find yourself wanting to create a concrete class that inherits from a
concrete classin alibrary to which you have only read access?

Y ou can't modify the library to insert a new abstract class, so your choices are both limited and unappesaling:

« Derive your concrete class from the existing concrete class, and put up with the assignment-related problems we examined at
the beginning of this Item. You'll al'so have to watch out for the array-related pitfalls described in ltem 3.

« Trytofind an abstract class higher in the library hierarchy that does most of what you need, then inherit from that class. Of
course, there may not be a suitable class, and even if thereis, you may have to duplicate alot of effort that has already been put
into the implementation of the concrete class whaose functionality you'd like to extend.

« Implement your new classin terms of the library class you'd like to inherit from (see Items E40 and E42). For example, you
could have an abject of the library class as a data member, then reimplement the library class'sinterface in your new class:

cl ass W ndow { /1l this is the library class
publi c:

virtual void resize(int newNdth, int newHei ght);

virtual void repaint() const;

int width() const;
i nt height() const;

}1
cl ass Speci al W ndow { /1 this is the class you

publi c: /1l wanted to have inherit
/1 from W ndow

/'l pass-through inplenentations of nonvirtual functions
int width() const { return w.width(); }
int height() const { return w height(); }

/1 new inplenmentations of "inherited" virtual functions
virtual void resize(int newNdth, int newHeight);
virtual void repaint() const;

private:
W ndow w,
1
This strategy requires that you be prepared to update your class each time the library vendor updates the class on which you're
dependent. It also requires that you be willing to forgo the ability to redefine virtual functions declared in the library class,
because you can't redefine virtual functions unless you inherit them.
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« Make do with what you've got. Use the concrete class that's in the library and modify your software so that the class suffices.
Write non-member functions to provide the functionality you'd like to add to the class, but can't. The resulting software may not
be as clear, as efficient, as maintainable, or as extensible as you'd like, but at least it will get the job done.

None of these choicesis particularly attractive, so you have to apply some engineering judgment and choose the poison you find least
unappealing. It's not much fun, but life's like that sometimes. To make things easier for yourself (and the rest of us) in the future,
complain to the vendors of libraries whose designs you find wanting. With luck (and alot of comments from clients), those designs
will improve as time goes on.

Still, the general rule remains: non-leaf classes should be abstract. Y ou may need to bend the rule when working with outside libraries,
but in code over which you have control, adherence to it will yield dividends in the form of increased reliability, robustness,
comprehensibility, and extensibility throughout your software.

Back to Item 33: Make non-leaf classes abstract
Continue to Item 35: Familiarize yourself with the language standard

Item 34: Understand how to combine C++ and C in the same program.

In many ways, the things you have to worry about when making a program out of some componentsin C++ and somein C are the
same as those you have to worry about when cobbling together a C program out of object files produced by more than one C compiler.
There is no way to combine such files unless the different compilers agree on implementation-dependent features likethe sizeof i nt s
and doubl es, the mechanism by which parameters are passed from caller to callee, and whether the caller or the callee orchestrates
the passing. These pragmatic aspects of mixed-compiler software development are quite properly ignored by -language standardization
efforts, so the only reliable way to know that object files from compiler A and compiler B can be safely combined in a program is to
obtain assurances from the vendors of A and B that their products produce compatible output. Thisis as true for programs made up of
C++and Casitisfor all-C++ or al-C programs, so before you try to mix C++ and C in the same program, make sure your C++ and C
compilers generate compatible object files.

Having done that, there are four other things you need to consider: name mangling, initialization of statics, dynamic memory
allocation, and data structure compatibility.

Name Mangling

Name mangling, as you may know, is the process through which your C++ compilers give each function in your program a unique
name. In C, this process is unnecessary, because you can't overload function names, but nearly all C++ programs have at least afew
functions with the same name. (Consider, for example, the iostream library, which declares severa versions of oper at or << and
oper at or >>.) Overloading isincompatible with most linkers, because linkers generally take a dim view of multiple functions with
the same name. Name mangling is a concession to the realities of linkers; in particular, to the fact that linkers usually insist on all
function names being unique.

Aslong as you stay within the confines of C++, name mangling is not likely to concern you. If you have afunction namedr awLi ne
that a compiler manglesinto xyzzy, you'll always use the name dr awLi ne, and you'll have little reason to care that the underlying
object files happen to refer toxyzzy.

It'sadifferent story if dr awLi ne isinaC library. In that case, your C++ source file probably includes a header file that contains a
declaration like this,

void drawLine(int x1, int yl, int x2, int y2);

and your code contains callsto dr awLi ne in the usual fashion. Each such call istranslated by your compilersinto acall to the
mangled name of that function, so when you write this,

drawLi ne(a, b, ¢, d); /1 call to unmangled function name
your object files contain afunction call that corresponds to this:
xyzzy(a, b, ¢, d); /1 call to mangled function manme

But if dr awLi ne isaC function, the object file (or archive or dynamically linked library, etc.) that contains the compiled version of
dr awLi ne contains afunction called dr awLi ne; no name mangling has taken place. When you try to link the object files
comprising your program together, you'll get an error, because the linker islooking for afunction called xyzzy, and there is no such
function.

To solve this prablem, you need away to tell your C++ compilers not to mangle certain function names. Y ou never want to mangle the
names of functions written in other languages, whether they be in C, assembler, FORTRAN, Lisp, Forth, or what-have-you. (Yes,
what-have-you would include COBOL, but then what would you have?) After al, if you call aC function named dr awLi ne, it's
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really called dr awLi ne, and your object code should contain areference to that name, not to some mangled version of that name.

To suppress name mangling, use C++'sext ern " C' directive:

/1l declare a function called drawLi ne; don't mangle
[/ its nane

extern "C'

void drawLine(int x1, int yl, int x2, int y2);

Don't be drawn into the trap of assuming that wherethere'sanext ern " C', theremust bean ext ern " Pascal " and anext ern

" FORTRAN" aswell. There'snot, at least not in <the standard. The best way to view ext ern " C" isnot as an assertion that the
associated function iswritten in C, but as a statement that the function should be called asif it were written in C. (Technically,

ext ern " C' meansthe function has C linkage, but what that meansisfar from clear. One thing it dways means, however, is that
name mangling is suppressed.)

For example, if you were so unfortunate as to have to write afunction in assembler, you could declareit ext ern " C", too:

[/ this function is in assenbler —don't mangle its name
extern "C'" void twi ddl eBits(unsigned char bits);

Y ou can even declare C++ functionsext er n " C" . This can be useful if you're writing alibrary in C++ that you'd like to provide to
clients using other programming languages. By suppressing the name mangling of your C++ function names, your clients can use the
natural and intuitive names you choose instead of the mangled names your compilers would otherwise generate:

/1 the following C++ function is designed for use outside
/'l C++ and shoul d not have its nanme mangl ed
extern "C'" void sinulate(int iterations);

Often you'll have aslew of functions whose names you don't want mangled, and it would be a pain to precede each with ext er n
" C". Fortunately, you don't have to. ext er n " C"' can also be made to apply to awhole set of functions. Just enclose them all in curly
braces:

extern "C' { /1 disable name mangling for
/1 all the follow ng functions

void drawLine(int x1, int yl, int x2, int y2);
void tw ddl eBi t s(unsi gned char bits);
void sinulate(int iterations);

}

Thisuse of ext er n " C' simplifies the maintenance of header files that must be used with both C++ and C. When compiling for
C++, you'll want toinclude ext ern " C", but when compiling for C, you won't. By taking advantage of the fact that the preprocessor
symbol ___cpl uspl us isdefined only for C++ compilations, you can structure your polyglot header files as follows:

#i fdef __cpl uspl us
extern "C" {
#endi f
void drawLine(int x1, int yl, int x2, int y2);

void twi ddl eBits(unsigned char bits);
void simulate(int iterations);

#i fdef _ cpl usplus

}
#endi f

Thereis, by the way, no such thing as a"standard" name mangling algorithm. Different compilers are free to mangle namesin
different ways, and different compilers do. Thisisagood thing. If al compilers mangled names the same way, you might be lulled
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into thinking they all generated compatible code. The way things are now, if you try to mix object code from incompatible C++
compilers, there's a good chance you'll get an error during linking, because the mangled names won't match up. Thisimplies you'll
probably have other compatibility problems, too, and it's better to find out about such incompatibilities sooner than later,

Initialization of Statics

Once you've mastered name mangling, you need to deal with the fact that in C++, lots of code can get executed before and after mai n.
In particular, the constructors of static class objects and objects at global, namespace, and file scope are usually called before the body
of mai n isexecuted. This process is known as static initialization (see Item E47). Thisisin direct opposition to the way we normally
think about C++ and C programs, in which we view mai n asthe entry point to execution of the program. Similarly, objectsthat are
created through static initialization must have their destructors called during static destruction; that process typically takes place after
mai n has finished executing.

To resolve the dilemmathat mai n is supposed to be invoked first, yet objects need to be constructed before mai n is executed, many
compilersinsert acall to aspecial compiler-written function at the beginning of mai n, and it isthis special function that takes care of
static initialization. Similarly, compilers often insert a call to another special function at the end of mai n to take care of the
destruction of static objects. Code generated for nai n often looks asif mai n had been written like this:

int main(int argc, char *argv[])

{
perfornStaticlnitialization(); /'l generated by the
/1 inplenentation
the statenents you put in main go here;
perfornttaticDestruction(); /'l generated by the
/'l inplenmentation
}

Now don't take thistoo literally. Thefunctionsperforntaticlnitiali zati onandperfornttati cDestruction
usually have much more cryptic names, and they may even be generated inline, in which case you won't see any functions for them in
your object files. The important point is this: if a C++ compiler adopts this approach to the initialization and destruction of static
objects, such objects will be neither initialized nor destroyed unless mai n iswritten in C++. Because this approach to static
initialization and destruction is common, you should try to write mai n in C++ if you write any part of a software system in C++.

Sometimes it would seem to make more sense to write mai n in C — say if most of aprogram isin C and C++ isjust a support library.
Nevertheless, there's a good chance the C++ library contains static objects (if it doesn't now, it probably will in the future — see Item
32), soit's till agood ideato write mai n in C++ if you possibly can. That doesn't mean you need to rewrite your C code, however.
Just rename the mai n you wrotein Cto ber eal Mai n, then have the C++ version of nai n cal r eal Mai n:

extern "C' /1 inplement this
int real Main(int argc, char *argv[]); /1 function in C
int main(int argc, char *argv[]) [l wite this in C++
{

return real Main(argc, argv);

}

If you do this, it'sagood ideato put acomment above mai n explaining what is going on.

If you cannot write mai n in C++, you've got a problem, because there is no other portable way to ensure that constructors and
destructors for static objects are called. This doesn't mean all islogt, it just means you'll have to work alittle harder. Compiler vendors
are well acquainted with this problem, so almost all provide some extralinguistic mechanism for initiating the process of static
initialization and static destruction. For information on how this works with your compilers, dig into your compilers documentation or
contact their vendors.

Dynamic Memory Allocation

That brings us to dynamic memory alocation. The general rule is simple: the C++ parts of a program use newand del et e (seeltem
8), and the C parts of aprogram use mal | oc (and itsvariants) and f r ee. Aslong as memory that came from newis deallocated via
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del et e and memory that came from mal | oc isdeallocated viaf r ee, all iswell. Calling f r ee on anewed pointer yields
undefined behavior, however, as doesdel et einganal | oced pointer. The only thing to remember, then, isto segregate rigorously
your news and del et esfromyour nal | ocsandfr ees.

Sometimesthisis easier said than done. Consider the humble (but handy) st r dup function, which, though standard in neither C nor
C++, isnevertheless widely available:

char * strdup(const char *ps); /1l return a copy of the
/1 string pointed to by ps

If amemory leak isto be avoided, the memory alocated inside st r dup must be deallocated by st r dup's caller. But how isthe
memory to be deallocated? By using del et e? By callingf r ee?If thest r dup you'recaling isfrom aC library, it'sthe latter. If it
was written for a C++ library, it's probably the former. What you need to do after calling st r dup, then, varies not only from system
to system, but also from compiler to compiler. To reduce such portability headaches, try to avoid calling functions that are neither in
the standard library (see Item E49 and Item 35) nor available in a stable form on most computing platforms.

Data Structure Compatibility

Which brings us at long last to passing data between C++ and C programs. There's no hope of making C functions understand C++
features, so the level of discourse between the two languages must be limited to those concepts that C can express. Thus, it should be
clear there's no portable way to pass objects or to pass pointers to member functions to routines written in C. C does understand
normal pointers, however, so, provided your C++ and C compilers produce compatible output, functionsin the two languages can
safely exchange pointersto objects and pointers to non-member or static functions. Naturally, structs and variables of built-in types
(eg., i nts, chars, etc.) can aso freely cross the C++/C border.

Because the rules governing the layout of ast r uct in C++ are consistent with those of C, it is safe to assume that a structure
definition that compilesin both languagesis laid out the same way by both compilers. Such structs can be safely passed back and forth
between C++ and C. If you add nonvirtual functions to the C++ version of the struct, its memory layout should not change, so objects
of astruct (or class) containing only non-virtual functions should be compatible with their C brethren whose structure definition lacks
only the member function declarations. Adding virtual functions ends the game, because the addition of virtual functionsto a class
causes objects of that type to use a different memory layout (see Item 24). Having a struct inherit from another struct (or class) usualy

changesits layout, too, so structs with base structs (or classes) are also poor candidates for exchange with C functions.

From a data structure perspective, it boils down to this: it is safe to pass data structures from C++ to C and from C to C++ provided the
definition of those structures compilesin both C++ and C. Adding nonvirtual member functionsto the C++ version of a struct that's
otherwise compatible with C will probably not affect its compatibility, but almost any other change to the struct will.

Summary

If you want to mix C++ and C in the same program, remember the following simple guidelines:
» Make sure the C++ and C compilers produce compatible object files.
» Declare functions to be used by both languagesext ern " C".
« If a all possible, write mai n in C++.
o Alwaysusedel et e with memory from new; dways usef r ee with memory from mal | oc.

« Limit what you pass between the two languages to data structures that compile under C; the C++ version of structs may contain
non-virtual member functions.

Back to Item 34: Understand how to combine C++ and C in the same program
Continue to Recommended Reading

Item 35: Familiarize yourself with -the |language standard.

Sinceits publication in 1990, -The Annotated C++ Reference Manual (see page 285) has been the definitive reference for working
programmers needing to know what isin C++ and what is not. In the years since the ARM (asit's fondly known) came out, the
|SO/ANSI committee standardizing the language has changed (primarily extended) the language in ways both big and small. Asa

definitive reference, the ARM no longer suffices.

The post-ARM changes to C++ significantly affect how good programs are written. As aresult, it isimportant for C++ programmers
to be familiar with the primary ways in which the C++ specified by the standard differs from that described by the ARM.

The -ISO/ANSI standard for C++ iswhat vendors will consult when implementing compilers, what authors will examine when
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preparing books, and what programmers will ook to for definitive answers to questions about C++. Among the most important
changesto C++ sincethe ARM are the following:

« New features have been added: RTTI, namespaces, bool , therut abl e and expl i ci t keywords, the ability to overload
operators for enums, and the ability to initialize constant integral static class members within a class definition.

« Templates have been extended: member templates are now alowed, thereis a standard syntax for forcing template
instanti ations, non-type arguments are now allowed in function templates, and class templates may themselves be used as
template arguments.

» Exception handling has been refined: exception specifications are now more rigorously checked during compilation, and the
unexpect ed function may now throw abad_except i on object.

o Memory allocation routines have been modified: oper at or new ] and oper at or del et e[ ] have been added, the
operatorsnew/newf ] now throw an exception if memory can't be allocated, and there are now aternative versions of the
operatorsnew/newf ] that return O when an alocation fails (see Item E7).

« New casting formshave been added: st ati ¢_cast,dynamni ¢c_cast,const _cast,andrei nterpret _cast.

« Languageruleshave been refined: redefinitions of virtual functions need no longer have areturn type that exactly matches
that of the function they redefine, and the lifetime of temporary objects has been defined precisely.

Almost al these changes are described in -The Design and Evolution of C++ (see page 285). Current C++ textbooks (those written

after 1994) should include them, too. (If you find one that doesn't, reject it.) In addition, More Effective C++ (that's this book) contains
examples of how to use most of these new features. If you're curious about something on thislist, try looking it up in the index.

The changes to C++ proper pale in comparison to what's happened to the standard library. Furthermore, the evolution of the standard
library has not been as well publicized as that of the language. The Design and Evolution of C++, for example, makes almost no
mention of the standard library. The books that do discuss the library are sometimes out of date, because the library changed quite
substantially in 1994.

The capabilities of the standard library can be broken down into the following general categories (see also Item E49):

« Support for the standard C library. Fear not, C++ still remembers its roots. Some minor tweaks have brought the C++
version of the C library into conformance with C++'s stricter type checking, but for all intents and purposes, everything you
know and love (or hate) about the C library continues to be knowable and lovable (or hateable) in C++, too.

« Support for strings. As Chair of the working group for the standard C++ library, Mike Vilot wastold, "If thereisn't a standard
stri ng type, there will be blood in the streets!" (Some people get so emotional.) Calm yourself and put away those hatchets
and truncheons — the standard C++ library has strings.

« Support for localization. Different cultures use different character sets and follow different conventions when displaying dates
and times, sorting strings, printing monetary values, etc. Localization support within the standard library facilitates the
development of programs that accommodate such cultural differences.

o Support for I/0. Theiostream library remains part of the C++ standard, but the committee has tinkered with it a bit. Though
some classes have been eliminated (notably i ost r eamand f st r ean) and some have been replaced (e.g., st r i ng-based
stringstreansreplacechar * -based st r st r eans, which are now deprecated), the basic capabilities of the standard
iostream classes mirror those of the implementations that have existed for several years.

« Support for numeric applications. Complex numbers, long a mainstay of examplesin C++ texts, have finally been enshrined
in the standard library. In addition, the library contains special array classes (val ar r ays) that restrict aliasing. These arrays
are eligible for more aggressive optimization than are built-in arrays, especially on multiprocessing architectures. The library
also provides afew commonly useful numeric functions, including partial sum and adjacent difference.

« Support for general-pur pose container s and algorithms. Contained within the standard C++ library isa set of class and
function templates collectively known as the Standard Template Library (STL). The STL isthe most revolutionary part of the
standard C++ library. | summarize its features below.

Before | describe the STL, though, | must dispense with two idiosyncrasies of the standard C++ library you need to know about.

First, amost everything in the library is atemplate. In this book, | may have referred to the standard st r i ng class, but in fact thereis
no such class. Instead, there is a class template called basi ¢_st r i ng that represents sequences of characters, and this template
takes as a parameter the type of the characters making up the sequences. This alows for strings to be made up of char s, wide chars,
Unicode chars, whatever.

What we normally think of asthe st ri ng classisreally the template instantiation basi c_st ri ng<char >. Because itsuse is so
common, the standard library provides a typedef:

t ypedef basic_string<char> string;
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Even this glosses over many details, because the basi c¢_st ri ng template takes three arguments; al but the first have default
values. To really understand the st r i ng type, you must face this full, unexpurgated declaration of basi ¢_stri ng:

t enpl at e<cl ass char T,
class traits = string_char_traits<charT>,
class Allocator = allocator>
cl ass basic_string;

Y ou don't need to understand this gobbledygook to use the st r i ng type, because even though st ri ng isatypedef for The
Template Instantiation from Hell, it behaves as if it were the unassuming non-template class the typedef makes it appear to be. Just
tuck away in the back of your mind the fact that if you ever need to customize the types of characters that go into strings, or if you
want to fine-tune the behavior of those characters, or if you want to seize control over the way memory for stringsis allocated, the
basi c_stri ng template allows you to do these things.

The approach taken in the design of the st r i ng type — generaize it and make the generalization atemplate — is repeated
throughout the standard C++ library. |0Ostreams? They're templates; atype parameter defines the type of character making up the
streams. Complex numbers? Also templates; a type parameter defines how the components of the numbers should be stored.
Vaarrays? Templates, atype parameter specifies what's in each array. And of course the STL consists amost entirely of templates. If
you are not comfortable with templates, now would be an excellent time to start making serious headway toward that goal.

The other thing to know about the standard library isthat virtually everything it containsisinside the namespace st d. To usethingsin
the standard library without explicitly qualifying their names, you'll have to employ ausi ng directive or (preferably) usi ng
declarations (see Item E28). Fortunately, this syntactic administriviais automatically taken care of when you #i ncl ude the
appropriate headers.

The Standard Template Library

The biggest newsin the standard C++ library isthe STL, the Standard Template Library. (Since amost everything in the C++ library
isatemplate, the name STL is not particularly descriptive. Nevertheless, this is the name of the containers and algorithms portion of
the library, so good name or bad, thisis what we use.)

The STL islikely to influence the organization of many — perhaps most — C++ libraries, so it's important that you be familiar with
its genera principles. They are not difficult to understand. The STL is based on three fundamental concepts: containers, iterators, and
algorithms. Containers hold collections of objects. Iterators are pointer-like objects that let you walk through STL containersjust as
you'd use pointers to walk through built-in arrays. Algorithms are functions that work on STL containers and that use iterators to help
them do their work.

It is easiest to understand the STL view of the world if we remind ourselves of the C++ (and C) rulesfor arrays. Thereisreally only
one rule we need to know: a pointer to an array can legitimately point to any element of the array or to one element beyond the end of
the array. If the pointer points to the element beyond the end of the array, it can be compared only to other pointers to the array; the
results of dereferencing it are undefined.

We can take advantage of this rule to write afunction to find a particular value in an array. For an array of integers, our function might
look likethis:
int * find(int *begin, int *end, int value)

while (begin !'= end & *begin != val ue) ++begin;
return begin;

}

Thisfunction looks for val ue in the range between begi n and end (excludingend —end pointsto one beyond the end of the
array) and returns a pointer to the first occurrence of val ue inthe array; if noneisfound, it returnsend.

Returning end seems like afunny way to signal afruitless search. Wouldn't O (the null pointer) be better? Certainly null seems more
natural, but that doesn't make it "better.” Thef i nd function must return some distinctive pointer value to indicate the search failed,
and for this purpose, the end pointer is as good as the null pointer. In addition, as we'll soon see, the end pointer generalizes to other
types of containers better than the null pointer.

Frankly, thisis probably not the way you'd write thef i nd function, but it's not unreasonable, and it generalizes astonishingly well. If
you followed this simple example, you have mastered most of the ideas on which the STL is founded.

You could usethef i nd function like this;
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i nt val ues[50];

int *firstFive = find(val ues, /'l search the range
val ues+50, /1l values[0] - val ues[49]
5); [l for the value 5
if (firstFive != values+50) ({ /1 did the search succeed?
Il yes
}
el se {
/1 no, the search failed
}
You can also usef i nd to search subranges of the array:
int *firstFive = find(val ues, /'l search the range
val ues+10, /1 values[0] - values[9]
5); /!l for the value 5
int age = 36;
int *firstValue = find(val ues+10, /1l search the range
val ues+20, /1 values[10] - val ues[19]
age) ; /1l for the value in age

There's nothing inherent inthef i nd function that limitsits applicability to arrays of i nt s, so it should really be atemplate:

t empl at e<cl ass T>
T* find(T *begin, T *end, const T& val ue)

while (begin !'= end & *begin != val ue) ++begin;
return begin;

}

In the transformation to a template, notice how we switched from pass-by-value for val ue to pass-by-reference-to-const . That's
because now that we're passing arbitrary types around, we have to worry about the cost of pass-by-value. Each by-value parameter
costs us a call to the parameter's constructor and destructor every time the function isinvoked. We avoid these costs by using
pass-by-reference, which involves no object construction or destruction (see Item E22).

Thistemplate is nice, but it can be generalized further. Look at the operations on begi n and end. The only ones used are comparison
for inequality, dereferencing, prefix increment (see Item 6), and copying (for the function's return value — see ltem 19). These are all

operations we can overload, so why limit f i nd to using pointers? Why not allow any object that supports these operations to be used
in addition to pointers? Doing so would freethe f i nd function from the built-in meaning of pointer operations. For example, we
could define a pointer-like object for alinked list whose prefix increment operator moved usto the next element in the list.

Thisisthe concept behind STL iterators. Iterators are pointer-like objects designed for use with STL containers. They are first cousins
to the smart pointers of Item 28, but smart pointers tend to be more ambitious in what they do than do STL iterators. From atechnical

viewpoint, however, they are implemented using the same techniques.
Embracing the notion of iterators as pointer-like objects, we can replace the pointersin f i nd with iterators, thus rewriting f i nd like
this:

tenpl ate<class Iterator, class T>
Iterator find(lterator begin, lIterator end, const T& val ue)

{
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while (begin !'= end & *begin != val ue) ++begin;
return begin,;

}

Congratulations! Y ou have just written part of the Standard Template Library. The STL contains dozens of algorithms that work with
containers and iterators, and f i nd is one of them.

Containersin STL include bi t set ,vect or,| i st,deque, queue,priority_qgueue,stack, set, and map, and you can
apply f i nd to any of these container types:

| i st<char> charlLi st; /1l create STL list object
/1 for holding chars

1 1

/1 find the first occurrence of 'x' in charlList

list<char>::iterator it = find(charlList.begin(),
char Li st.end(),
IXI);

"Whoa!", | hear you cry, "This doesn't look anything likeit did in the array examples above!" Ah, but it does; you just have to know
what to look for.

Tocdl findforalist object, you need to come up with iterators that point to the first element of the list and to one past the last
element of the list. Without some help from thel i st class, thisisadifficult task, because you have noideahow al i st is
implemented. Fortunately, | i st (likeall STL containers) obliges by providing the member functionsbegi n and end. These
member functions return the iterators you need, and it is those iterators that are passed into the first two parameters of f i nd above.

When f i nd isfinished, it returns an iterator object that points to the found element (if thereis one) or to char Li st . end() (if
there's not). Because you know nothing about how | i st isimplemented, you also know nothing about how iteratorsinto | i st sare
implemented. How, then, are you to know what type of object isreturned by f i nd? Again, thel i st class, likeall STL containers,
comes to the rescue: it provides atypedef, i t er at or, that isthe type of iteratorsinto| i st s. Sincechar Li st isal i st of
char s, thetype of aniterator into such alistisl i st <char >::i t er at or, and that's what's used in the example above. (Each STL
container class actually defines two iterator types, i t er at or andconst _i t er at or . The former acts like anormal pointer, the
latter like a pointer-to-const .)

Exactly the same approach can be used with the other STL containers. Furthermore, C++ pointers are STL iterators, so the original
array examples work with the STL f i nd function, too:

i nt val ues[50];

int *firstFive = find(val ues, val ues+50, 5); /1l fine, calls
/1 STL find

Atitscore, STL isvery smple. It isjust a collection of class and function templates that adhere to a set of conventions. The STL
collection classes provide functions like begi n and end that return iterator objects of types defined by the classes. The STL
algorithm functions move through collections of objects by using iterator objects over STL collections. STL iterators act like pointers.
That'sreally al thereisto it. There's no big inheritance hierarchy, no virtual functions, none of that stuff. Just some class and function
templates and a set of conventions to which they all subscribe.

Which leads to another revelation: STL is extensible. Y ou can add your own collections, algorithms, and iteratorsto the STL family.
Aslong asyou follow the STL conventions, the standard STL collections will work with your algorithms and your collections will
work with the standard STL algorithms. Of course, your templates won't be part of the standard C++ library, but they'll be built on the
same principles and will be just as reusable.

There is much more to the C++ library than I've described here. Before you can use the library effectively, you must learn more about
it than I've had room to summarize, and before you can write your own STL-compliant templates, you must |earn more about the
conventions of the STL. The standard C++ library isfar richer than the C library, and the time you take to familiarize yourself with it
istime well spent (see also Item E49). Furthermore, the design principles embodied by the library — those of generality, extensibility,
customizability, efficiency, and reusability — are well worth learning in their own right. By studying the standard C++ library, you not
only increase your knowledge of the ready-made components available for use in your software, you learn how to apply the features of
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C++ more effectively, and you gain insight into how to design better libraries of your own.

Back to Item 35: Familiarize yourself with the language standard
Continue to An auto_ptr Implementation

Recommended Reading

So your appetite for information on C++ remains unsated. Fear not, there's more — much more. In the sections that follow, | put forth
my recommendations for further reading on C++. It goes without saying that such recommendations are both subjective and selective,
but in view of the litigious age in which we live, it's probably a good idea to say it anyway.

Books

There are hundreds — possibly thousands — of books on C++, and new contenders join the fray with great frequency. | haven't seen
all these books, much less read them, but my experience has been that while some books are very good, some of them, well, some of
them aren't.

What followsisthelist of books | find myself consulting when | have questions about software development in C++. Other good
books are available, I'm sure, but these are the ones | use, the ones | can truly recommend.

A good place to begin is with the books that describe the language itself. Unless you are crucially dependent on the nuances of the
-official standards documents, | suggest you do, too.

-The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, Addison-Wesley, 1990, ISBN 0-201-51459-1.

-The Design and Evolution of C++, Bjarne Stroustrup, Addison-Wesley, 1994, ISBN 0-201-54330-3.

These books contain not just a description of what's in the language, they a so explain the rationale behind the design decisions —
something you won't find in the official standard documents. The Annotated C++ Reference Manual is now incomplete (several
language features have been added since it was published — see Item 35) and is in some cases out of date, but it is still the best
reference for the core parts of the language, including templates and exceptions. The Design and Evolution of C++ covers most of
what's missing in The Annotated C++ Reference Manual; the only thing it lacks is a discussion of the Standard Template Library
(again, see Item 35). These books are not tutorials, they're references, but you can't truly understand C++ unless you understand the
material in these books.

For amore genera reference on the language, the standard library, and how to apply it, there is no better place to look than the book
by the man responsible for C++ in the first place:

°The C++ Programming Language (Third Edition), Bjarne Stroustrup, Addison-Wesley, 1997, ISBN 0-201-88954-4.

Stroustrup has been intimately involved in the language's design, implementation, application, and standardization since its inception,
and he probably knows more about it than anybody else does. His descriptions of language features make for dense reading, but that's
primarily because they contain so much information. The chapters on the standard C++ library provide a good introduction to this
crucial aspect of modern C++.

If you're ready to move beyond the language itself and are interested in how to apply it effectively, you might consider my other book
on the subject:

-Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs, Scott Meyers, Addison-Wesley,
1998, ISBN 0-201-92488-9.

That book is organized similarly to thisone, but it covers different (arguably more fundamental) material.

A book pitched at roughly the same level as my Effective C++ books, but covering different topics, is
-C++ Srategies and Tactics, Robert Murray, Addison-Wesley, 1993, ISBN 0-201-56382-7.

Murray's book is especially strong on the fundamentals of template design, a topic to which he devotes two chapters. He also includes
a chapter on the important topic of migrating from C development to C++ development. Much of my discussion on reference counting
(see Item 29) is based on the ideasin C++ Strategies and Tactics.

If you're the kind of person who likes to learn proper programming technique by reading code, the book for you is
°C++ Programming Style, Tom Cargill, Addison-Wesley, 1992, ISBN 0-201-56365-7.

Each chapter in this book starts with some C++ software that has been published as an example of how to do something correctly.
Cargill then proceeds to dissect — nay, vivisect — each program, identifying likely trouble spots, poor design choices, brittle
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implementation decisions, and things that are just plain wrong. He then iteratively rewrites each example to eliminate the weaknesses,
and by the time he's done, he's produced code that is more robust, more maintainable, more efficient, and more portable, and it still
fulfills the original problem specification. Anybody programming in C++ would do well to heed the lessons of this book, but it is
especially important for those involved in code inspections.

(One topic Cargill does not discussin C++ Programming Style is exceptions. He turns his critical eye to this language feature in the

following article, however, which demonstrates why writing exception-safe code is more difficult than most programmers realize:
"Exception Handling: A False Sense of Security," -C++ Report, Volume 6, Number 9, November-December 1994, pages
21-24.

If you are contemplating the use of exceptions, read this article before you proceed.

Once you've mastered the basics of C++ and are ready to start pushing the envelope, you must familiarize yourself with
-Advanced C++: Programming Styles and Idioms, James Coplien, Addison-Wesley, 1992, ISBN 0-201-54855-0.

| generally refer to this as "the LSD book," because it's purple and it will expand your mind. Coplien covers some straightforward
material, but hisfocusisreally on showing you how to do thingsin C++ you're not supposed to be able to do. Y ou want to construct
objects on top of one another? He shows you how. Y ou want to bypass strong typing? He gives you away. Y ou want to add data and
functions to classes as your programs are running? He explains how to do it. Most of the time, you'll want to steer clear of the
techniques he describes, but sometimes they provide just the solution you need for atricky problem you're facing. Furthermore, it's
illuminating just to see what kinds of things can be done with C++. This book may frighten you, it may dazzle you, but when you've
read it, you'll never look at C++ the same way again.

If you have anything to do with the design and implementation of C++ libraries, you would be foolhardy to overlook
°Designing and Coding Reusable C++, Martin D. Carroll and Margaret A. Ellis, Addison-Wesley, 1995, ISBN 0-201-51284-X.

Carroll and Ellis discuss many practical aspects of library design and implementation that are simply ignored by everybody else. Good
libraries are small, fast, extensible, easily upgraded, graceful during template instantiation, powerful, and robust. It is not possible to
optimize for each of these attributes, so one must make trade-offs that improve some aspects of alibrary at the expense of others.
Designing and Coding Reusable C++ examines these trade-offs and offers down-to-earth advice on how to go about making them.

Regardless of whether you write software for scientific and engineering applications, you owe yourself alook at
-Scientific and Engineering C++, John J. Barton and Lee R. Nackman, Addison-Wesley, 1994, ISBN 0-201-53393-6.

The first part of the book explains C++ for FORTRAN programmers (now there's an unenviable task), but the latter parts cover
techniques that are relevant in virtually any domain. The extensive material on templatesis close to revolutionary; it's probably the
most advanced that's currently available, and | suspect that when you've seen the miracles these authors perform with templates, you'll
never again think of them as little more than souped-up macros.

Finally, the emerging discipline of patternsin object-oriented software devel opment (see page 123) is described in

-Design Patterns. Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Addison-Wesley, 1995, ISBN 0-201-63361-2.

This book provides an overview of the ideas behind patterns, but its primary contribution is a catalogue of 23 fundamental patterns
that are useful in many application areas. A stroll through these pages will almost surely reveal a pattern you've had to invent yourself
at one time or another, and when you find one, you're almost certain to discover that the design in the book is superior to the ad-hoc
approach you came up with. The names of the patterns here have already become part of an emerging vocabulary for object-oriented
design; failure to know these names may soon be hazardous to your ability to communicate with your colleagues. A particular strength
of the book isits emphasis on designing and implementing software so that future evolution is gracefully accommodated (see Items 32
and 33).

Design Patternsis also available asa CD-ROM:

-Design Patterns CD: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ral ph Johnson, and John
Vlissides, Addison-Wesley, 1998, ISBN 0-201-63498-8.

Magazines

For hard-core C++ programmers, there's really only one game in town:
*C++ Report, SIGS Publications, New York, NY.
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The magazine has made a conscious decision to move away from its "C++ only" roots, but the increased coverage of domain- and
system-specific programming issues is worthwhile in its own right, and the material on C++, if occasionally a bit off the deep end,
continues to be the best available.

If you're more comfortable with C than with C++, or if you find the C++ Report's material too extreme to be useful, you may find the
articles in this magazine more to your taste:

°C/C++ Users Journal, Miller Freeman, Inc., Lawrence, KS.

Asthe name suggests, this covers both C and C++. The articles on C++ tend to assume aweaker background than those in the C++
Report. In addition, the editorial staff keeps atighter rein on its authors than does the Report, so the material in the magazine tendsto
be relatively mainstream. This helps filter out ideas on the lunatic fringe, but it also limits your exposure to techniques that are truly
cutting-edge.

Usenet Newsgroups

Three Usenet newsgroups are devoted to C++. The general -purpose anything-goes newsgroup iscconp. | ang. c++ . The postings
there run the gamut from detailed explanations of advanced programming techniques to rants and raves by those who love or hate C++
to undergraduates the world over asking for help with the homework assignments they neglected until too late. Volume in the
newsgroup is extremely high. Unless you have hours of free time on your hands, you'll want to employ afilter to help separate the
wheat from the chaff. Get agood filter — there'salot of chaff.

In November 1995, a moderated version of conp. | ang. c++ was created. Named -conp. | ang. c++. npder at ed, this
newsgroup is also designed for general discussion of C++ and related issues, but the moderators aim to weed out
implementation-specific questions and comments, questions covered in the extensive -on-line FAQ ("Frequently Asked Questions"
list), flame wars, and other matters of little interest to most C++ practitioners.

A more narrowly focused newsgroup is-conp. st d. c++, which is devoted to a discussion of -the C++ standard itself. Language
lawyers abound in this group, but it's a good place to turn if your picky questions about C++ go unanswered in the references
otherwise available to you. The newsgroup is moderated, so the signal-to-noise ratio is quite good; you won't see any pleas for
homework assistance here.

Back to Recommended Reading

Anaut o_ptr Implementation

Items 9, 10, 26, 31 and 32 attest to the remarkable utility of theaut o_pt r template. Unfortunately, few compilers currently ship with
a"correct" implementation.1 Items 9 and 28 sketch how you might write one yourself, but it's nice to have more than a sketch when
embarking on real-world projects.

Below are two presentations of an implementation for aut o_pt r . Thefirst presentation documents the class interface and
implements all the member functions outside the class definition. The second implements each member function within the class
definition. Stylistically, the second presentation isinferior to the first, because it fails to separate the class interface from its
implementation. However, aut o_pt r yields simple classes, and the second presentation brings that out much more clearly than does
thefirst.

Hereisaut o_pt r with itsinterface documented:

t enpl at e<cl ass T>
class auto _ptr {

public:
explicit auto_ptr(T *p = 0); /!l see ltem5 for a
/! description of "explicit"
t empl at e<cl ass U> /1 copy constructor nenber
auto_ptr(auto_ptr<U>& rhs); /[l tenmplate (see |Item 28):
/1 initialize a new auto_ptr
/1 with any conpatible
/1 auto_ptr
~auto_ptr();
t empl at e<cl ass U> /1 assi gnnment operator
auto_ptr<T>& /'l menber tenplate (see
operator=(auto_ptr<U>& rhs); /1l 1tem 28): assign from any
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/1 conpatible auto_ptr

T& operator*() const; /! see ltem 28

T* operator->() const; /] see ltem 28

T* get() const; /1 return value of current
/1 dumb pointer

T* rel ease(); /1 relinquish ownership of

/! current dunb pointer and
/1l return its value

void reset(T *p = 0); /! del ete owned pointer;
/1 assume ownership of p

private:
T *poi nt ee;
t enpl at e<cl ass U> /1 make all auto_ptr classes
friend class auto_ptr<U>; /1 friends of one anot her
1

t enpl at e<cl ass T>
inline auto_ptr<T>::auto _ptr(T *p)

. poi ntee(p)
{}

t enpl at e<cl ass T>
inline auto_ptr<T>::auto_ptr(auto_ptr<U>& rhs)
: pointee(rhs.rel ease())
{}

t enpl at e<cl ass T>
inline auto _ptr<T>::~auto_ptr()
{ delete pointee; }

t enpl at e<cl ass T>
t enpl at e<cl ass U>
inline auto_ptr<T>& auto_ptr<T>::operator=(auto_ptr<U>& rhs)
{
if (this !'= &hs) reset(rhs.release());
return *this;

}

t enpl at e<cl ass T>
inline T& auto_ptr<T>::operator*() const
{ return *pointee; }

t enpl at e<cl ass T>

inline T* auto_ptr<T>::operator->() const
{ return pointee; }

t enpl at e<cl ass T>

inline T* auto_ptr<T>:.:get() const

{ return pointee; }

t enpl at e<cl ass T>
inline T* auto_ptr<T>::rel ease()

{
T *ol dPoi ntee = poi nt ee;
poi ntee = 0;
return ol dPoi nt ee;

}

t enpl at e<cl ass T>
inline void auto_ptr<T>::reset(T *p)

{
if (pointee != p) {
del ete pointee;
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poi ntee = p;
}
}

Hereisaut o_pt r with al the functions defined in the class definition. As you can see, there's no brain surgery going on here:

t enpl at e<cl ass T>
class auto_ptr {
public:
explicit auto_ptr(T *p = 0): pointee(p) {}
t empl at e<cl ass U>
auto_ptr(auto_ptr<U>& rhs): pointee(rhs.rel ease()) {}
~auto _ptr() { delete pointee; }

t enpl at e<cl ass U>
auto_ptr<T>& operator=(auto_ptr<U>& rhs)

if (this = &hs) reset(rhs.rel ease());
return *this;

}

T& operator*() const { return *pointee; }
T* operator->() const { return pointee; }
T* get() const { return pointee; }

T* rel ease()

T *ol dPoi ntee = poi ntee;
poi ntee = O;
return ol dPoi nt ee;

}
void reset(T *p = 0)
{
if (pointee !'=p) {
del et e pointee;
poi ntee = p;
}
)
private:

T *poi nt ee;

tenpl ate<class U> friend class auto_ptr<U>;
1
If your compilers don't yet support expl i ci t, you may safely #def i ne it out of existence:
#define explicit

Thiswon't make aut o_pt r any less functional, but it will render it dightly less safe. For details, see [tem 5.

If your compilers lack support for member templates, you can use the non-template aut o_pt r copy constructor and assignment
operator described in Item 28. Thiswill make your aut o_pt r sless convenient to use, but thereis, alas, no way to approximate the

behavior of member templates. If member templates (or other language features, for that matter) are important to you, let your
compiler vendors know. The more customers ask for new language features, the sooner vendors will implement them.

Continue to Books' Index

1 Thisis primarily because the specification for aut o_pt r asfor years been a moving target. The final specification was adopted
only in November 1997. For details, consult -the aut o_pt r information at this book's WWW Site. Note that theaut o_pt r

described here omits afew details present in the official version, such asthe fact that aut o_pt r isinthe st d namespace (see Iltem
35) and that its member functions promise not to throw exceptions.
Return
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1 A second, unrelated use of dynani ¢_cast isto find the beginning of the memory occupied by an object. We explore that
capability in Item 27.
Return

2 Alas, it is not uncommon for compilers to fail to enforce this restriction. Before you write programs that rely on it, test your
compilers to make sure they behave correctly.
Return

3 A complete version of an almost-standard aut o_pt r appears on pages 291-294.
Return

4 Now thereis. In July 1995, the -|SO/ANSI standardization committee for C++ added a function, uncaught _except i on, that

returnst r ue if an exception is active and has not yet been caught.
Return

5 Alas, it cant, at least not portably. Though many compilers accept the code shown on this page, the -standardization committee has
inexplicably decreed that "an exception specification shall not appear in at ypedef ." | don't know why. If you need a portable
solution, you must — it hurts me to write this— make Cal | BackPt r amacro, sigh.

Return

6 In July 1995, the <|SO/ANSI committee standardizing C++ added a requirement that STL iterators support the "- >" operator, so

i t - >second should now work. Some STL implementations fail to satisfy this requirement, however, so (*i t). second isill
the more portable construct.

Return

7 In July 1996, the - SO/ANSI standardization committee declared that both named and unnamed objects may be optimized away via

the return value optimization, so both versions of oper at or * above may now yield the same (optimized) object code.
Return

8 At least that's what's supposed to happen. Alas, some compilerstreat T(| hs) asacast to removel hs'sconst ness, then add r hs
tol hs and return areference to the modified | hs! Test your compilers before relying on the behavior described above.
Return

9 In July 1996, the <|SO/ANSI standardization committee changed the default linkage of inline functions to external, so the problem |
describe here has been eliminated, at least on paper. Y our compilers may not yet be in accord with <the standard, however, so your best
bet is still to shy away from inline functions with static data.

Return

10Thest ri ng typein the standard C++ library (see Item E49 and Item 35) uses a combination of solutions two and three. The
reference returned from the non-const oper at or [ ] isguaranteed to be valid until the next function call that might modify the
string. After that, use of the reference (or the character to which it refers) yields undefined results. This allows the string's shareability
flag to bereset to t r ue whenever afunction is called that might modify the string.

Return

11 It turns out that it's not so predictable after all. -The C++ standard doesn't specify the return value of t ype_i nf o: : nane, and
different implementations behave differently. (Given a class SpaceShi p, for example, oneimplementation'st ype_i nf o: : nane
returns"cl ass SpaceShi p".) A better design would identify a class by the address of its associated t ype_i nf o object, because
that is guaranteed to be unique. Hi t Map would then be declared to be of type map<const type_i nfo*, HitFunctionPtr>.
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